Crawford 2006 Blood: Difference between revisions

From Bioblast
No edit summary
No edit summary
Β 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Publication
{{Publication
|title=Crawford JH, Isbell TS, Huang Z, Shiva S, Chacko BK, Schechter AN, Darley-Usmar VM, Kerby JD, Lang JD Jr, Kraus D, Ho C, Gladwin MT, Patel RP (2006) Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107:566-74.
|title=Crawford JH, Isbell TS, Huang Z, Shiva S, Chacko BK, Schechter AN, Darley-Usmar VM, Kerby JD, Lang JD Jr, Kraus D, Ho C, Gladwin MT, Patel RP (2006) Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107:566-74.
|info=[http://www.ncbi.nlm.nih.gov/pubmed/16195332 PMID:16195332 ]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/16195332 PMID: 16195332 Open Access]
|authors=Crawford JH, Isbell TS, Huang Z, Shiva S, Chacko BK, Schechter AN, Darley-Usmar VM, Kerby JD, Lang JD Jr, Kraus D, Ho C, Gladwin MT, Patel RP
|authors=Crawford JH, Isbell TS, Huang Zhi, Shiva S, Chacko BK, Schechter AN, Darley-Usmar VM, Kerby JD, Lang JD Jr, Kraus D, Ho C, Gladwin MT, Patel RP
|year=2006
|year=2006
|journal=Blood
|journal=Blood
Line 16: Line 16:
|tissues=Blood cells
|tissues=Blood cells
|preparations=Isolated mitochondria
|preparations=Isolated mitochondria
|injuries=Hypoxia, Oxidative stress;RONS
|injuries=Ischemia-reperfusion, Oxidative stress;RONS
|instruments=Oxygraph-2k
|instruments=Oxygraph-2k
|discipline=Biomedicine
|discipline=Biomedicine
}}
}}

Latest revision as of 08:52, 17 August 2022

Publications in the MiPMap
Crawford JH, Isbell TS, Huang Z, Shiva S, Chacko BK, Schechter AN, Darley-Usmar VM, Kerby JD, Lang JD Jr, Kraus D, Ho C, Gladwin MT, Patel RP (2006) Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood 107:566-74.

Β» PMID: 16195332 Open Access

Crawford JH, Isbell TS, Huang Zhi, Shiva S, Chacko BK, Schechter AN, Darley-Usmar VM, Kerby JD, Lang JD Jr, Kraus D, Ho C, Gladwin MT, Patel RP (2006) Blood

Abstract: Local vasodilation in response to hypoxia is a fundamental physiologic response ensuring oxygen delivery to tissues under metabolic stress. Recent studies identify a role for the red blood cell (RBC), with hemoglobin the hypoxic sensor. Herein, we investigate the mechanisms regulating this process and explore the relative roles of adenosine triphosphate, S-nitrosohemoglobin, and nitrite as effectors. We provide evidence that hypoxic RBCs mediate vasodilation by reducing nitrite to nitric oxide (NO) and ATP release. NO dependence for nitrite-mediated vasodilation was evidenced by NO gas formation, stimulation of cGMP production, and inhibition of mitochondrial respiration in a process sensitive to the NO scavenger C-PTIO. The nitrite reductase activity of hemoglobin is modulated by heme deoxygenation and heme redox potential, with maximal activity observed at 50% hemoglobin oxygenation (p50). Concomitantly, vasodilation is initiated at the p50, suggesting that oxygen sensing by hemoglobin is mechanistically linked to nitrite reduction and stimulation ofvasodilation. Mutation of the conserved Ξ²93cys residue decreases the heme redox potential (ie, decreases E1/2), an effect that increases nitrite reductase activity and vasodilation at any given hemoglobin saturation. These data support a function for RBC hemoglobin as an allosterically and redox-regulated nitrite reductase whose β€œenzyme activity” couples hypoxia to increased NO-dependent blood flow.


β€’ O2k-Network Lab: US AL Birmingham Kraus DW


Labels: MiParea: Respiration, Genetic knockout;overexpression 

Stress:Ischemia-reperfusion, Oxidative stress;RONS  Organism: Rat  Tissue;cell: Blood cells  Preparation: Isolated mitochondria 



HRR: Oxygraph-2k 


Cookies help us deliver our services. By using our services, you agree to our use of cookies.