Chance 1961 J Biol Chem-VI: Difference between revisions

From Bioblast
No edit summary
No edit summary
Line 6: Line 6:
|journal=J Biol Chem
|journal=J Biol Chem
|abstract=The  stoichiometry  and  efficiency  of  the  interaction  of  adenosine  5’-triphosphate  with  the  respiratory  carriers  has  been  evaluated.  From  oxidative  recovery  data,  the  adenosine  5’-triphosphate-electron  ratio  is  about  1.  Values  from  1.0  to  1.5  are obtained  from  the  direct  effects  of  adenosine  5’-triphosphate  in both  the  reduction  of  pyridine  nucleotide  and  the  oxidation  of  cytochrome,  although  the  computations  indicating  a  low  stoichiometric  ratio  for  oxidizing  equivalents  are  based  upon  more assumptions  than  in  the  case  of  reducing  equivalents.  There  is rough  agreement  in  the  number  of  oxidizing  equivalents  found in  cytochrome  and  the  number  of  reducing  equivalents  found  in pyridine  nucleotide,  provided  succinate  is  absent.  The  reversal  of  electron  transfer  occurs  with  the  expenditure  of  a  remarkably small  amount  of  energy  (fifteen  thousand  calories)  in  cytochrome  oxidation  and  pyridine  nucleotide  reduction  in  the respiratory  chain.  An  interpretation  of  such  data  suggests  that the  principal  point  of  entry  of  adenosine  5’-triphosphate  may  be at  the  pyridine  nucleotide-flavin  couple,  but  the  entry  of  adenosine  5’-triphosphate  simultaneously  at  other  points  is  also  consistent  with  these  data.
|abstract=The  stoichiometry  and  efficiency  of  the  interaction  of  adenosine  5’-triphosphate  with  the  respiratory  carriers  has  been  evaluated.  From  oxidative  recovery  data,  the  adenosine  5’-triphosphate-electron  ratio  is  about  1.  Values  from  1.0  to  1.5  are obtained  from  the  direct  effects  of  adenosine  5’-triphosphate  in both  the  reduction  of  pyridine  nucleotide  and  the  oxidation  of  cytochrome,  although  the  computations  indicating  a  low  stoichiometric  ratio  for  oxidizing  equivalents  are  based  upon  more assumptions  than  in  the  case  of  reducing  equivalents.  There  is rough  agreement  in  the  number  of  oxidizing  equivalents  found in  cytochrome  and  the  number  of  reducing  equivalents  found  in pyridine  nucleotide,  provided  succinate  is  absent.  The  reversal  of  electron  transfer  occurs  with  the  expenditure  of  a  remarkably small  amount  of  energy  (fifteen  thousand  calories)  in  cytochrome  oxidation  and  pyridine  nucleotide  reduction  in  the respiratory  chain.  An  interpretation  of  such  data  suggests  that the  principal  point  of  entry  of  adenosine  5’-triphosphate  may  be at  the  pyridine  nucleotide-flavin  couple,  but  the  entry  of  adenosine  5’-triphosphate  simultaneously  at  other  points  is  also  consistent  with  these  data.
|keywords=ATP, pyridine nucleotide, cytochrome oxidation, electron transfer, energy efficiency
|keywords=ATP, Pyridine nucleotide, Cytochrome oxidation, Electron transfer, Energy efficiency
}}
}}
{{Labeling
{{Labeling
|organism=Other Mammal, Other Non-Mammal
|organism=Mammals, Other Non-Mammal
|tissues=Cardiac muscle, Hepatocyte; Liver, Kidney
|tissues=Cardiac muscle, Hepatocyte; Liver, Kidney
|preparations=Isolated Mitochondria
|preparations=Isolated Mitochondria

Revision as of 17:34, 12 February 2013

Publications in the MiPMap
Chance B, Hollunger G (1961) The interaction of energy and electron transfer reactions in mitochondria VI. The efficiency of the reaction. J Biol Chem 236: 1577-1584.

» PMID: 13692280 Open Access

Chance B, Hollunger G (1961) J Biol Chem

Abstract: The stoichiometry and efficiency of the interaction of adenosine 5’-triphosphate with the respiratory carriers has been evaluated. From oxidative recovery data, the adenosine 5’-triphosphate-electron ratio is about 1. Values from 1.0 to 1.5 are obtained from the direct effects of adenosine 5’-triphosphate in both the reduction of pyridine nucleotide and the oxidation of cytochrome, although the computations indicating a low stoichiometric ratio for oxidizing equivalents are based upon more assumptions than in the case of reducing equivalents. There is rough agreement in the number of oxidizing equivalents found in cytochrome and the number of reducing equivalents found in pyridine nucleotide, provided succinate is absent. The reversal of electron transfer occurs with the expenditure of a remarkably small amount of energy (fifteen thousand calories) in cytochrome oxidation and pyridine nucleotide reduction in the respiratory chain. An interpretation of such data suggests that the principal point of entry of adenosine 5’-triphosphate may be at the pyridine nucleotide-flavin couple, but the entry of adenosine 5’-triphosphate simultaneously at other points is also consistent with these data. Keywords: ATP, Pyridine nucleotide, Cytochrome oxidation, Electron transfer, Energy efficiency


Labels:


Organism: Mammals"Mammals" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property., Other Non-Mammal"Other Non-Mammal" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property.  Tissue;cell: Cardiac muscle"Cardiac muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property., Hepatocyte; Liver"Hepatocyte; Liver" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property., Kidney  Preparation: Isolated Mitochondria"Isolated Mitochondria" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex II; Succinate Dehydrogenase"Complex II; Succinate Dehydrogenase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property., Complex V; ATP Synthase"Complex V; ATP Synthase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: ATP; ADP; AMP; PCr"ATP; ADP; AMP; PCr" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property.  Coupling state: OXPHOS 


Made history 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.