Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Dieteren 2011 Proc Natl Acad Sci U S A

From Bioblast
Publications in the MiPMap
Dieteren CE, Gielen SC, Nijtmans LG, Smeitink JA, Swarts HG, Brock R, Willems PH, Koopman WJ (2011) Solute diffusion is hindered in the mitochondrial matrix. Proc Natl Acad Sci U S A 108:8657-62.

Β» PMID: 21555543

Dieteren CE, Gielen SC, Nijtmans LG, Smeitink JA, Swarts HG, Brock R, Willems PH, Koopman WJ (2011) Proc Natl Acad Sci U S A

Abstract: Intracellular chemical reactions generally constitute reaction-diffusion systems located inside nanostructured compartments like the cytosol, nucleus, endoplasmic reticulum, Golgi, and mitochondrion. Understanding the properties of such systems requires quantitative information about solute diffusion. Here we present a novel approach that allows determination of the solvent-dependent solute diffusion constant (D(solvent)) inside cell compartments with an experimentally quantifiable nanostructure. In essence, our method consists of the matching of synthetic fluorescence recovery after photobleaching (FRAP) curves, generated by a mathematical model with a realistic nanostructure, and experimental FRAP data. As a proof of principle, we assessed D(solvent) of a monomeric fluorescent protein (AcGFP1) and its tandem fusion (AcGFP1(2)) in the mitochondrial matrix of HEK293 cells. Our results demonstrate that diffusion of both proteins is substantially slowed by barriers in the mitochondrial matrix (cristae), suggesting that cells can control the dynamics of biochemical reactions in this compartment by modifying its nanostructure.


β€’ O2k-Network Lab: NL Nijmegen Koopman WJ


Labels: