Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Has abstract" with value "The comparison of volumes of cells and subcellular structures with the pH values reported for them leads to a conflict with the definition of the pH scale. The pH scale is based on the ionic product of water, ''K''<sub>w</sub> = [H<sup>+</sup>]×[OH<sup>−</sup>]. We used ''K''<sub>w</sub> [in a reversed way] to calculate the number of undissociated H<sub>2</sub>O molecules required by this equilibrium constant to yield at least one of its daughter ions, H<sup>+</sup> or OH<sup>−</sup> at a given pH. In this way we obtained a formula that relates pH to the minimal volume ''V''<sub>pH</sub> required to provide a physical meaning to ''K''<sub>w</sub>, (where ''N''<sub>A</sub> is Avogadro’s number). For example, at pH 7 (neutral at 25 °C) ''V''<sub>pH</sub> = 16.6 aL. Any deviation from neutral pH results in a larger ''V''<sub>pH</sub> value. Our results indicate that many subcellular structures, including coated vesicles and lysosomes, are too small to contain free H<sup>+</sup> ions at equilibrium, thus the definition of pH based on ''K''<sub>w</sub> is no longer valid. Larger subcellular structures, such as mitochondria, apparently contain only a few free H<sup>+</sup> ions. These results indicate that pH fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H<sup>+</sup> ions as a general source for biochemical reactions. Consequences of this finding are discussed.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 2 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

    • Bal 2012 PLOS ONE  + (The comparison of volumes of cells and subThe comparison of volumes of cells and subcellular structures with the pH values reported for them leads to a conflict with the definition of the pH scale. The pH scale is based on the ionic product of water, ''K''<sub>w</sub> = [H<sup>+</sup>]×[OH<sup>−</sup>]. We used ''K''<sub>w</sub> [in a reversed way] to calculate the number of undissociated H<sub>2</sub>O molecules required by this equilibrium constant to yield at least one of its daughter ions, H<sup>+</sup> or OH<sup>−</sup> at a given pH. In this way we obtained a formula that relates pH to the minimal volume ''V''<sub>pH</sub> required to provide a physical meaning to ''K''<sub>w</sub>, (where ''N''<sub>A</sub> is Avogadro’s number). For example, at pH 7 (neutral at 25 °C) ''V''<sub>pH</sub> = 16.6 aL. Any deviation from neutral pH results in a larger ''V''<sub>pH</sub> value. Our results indicate that many subcellular structures, including coated vesicles and lysosomes, are too small to contain free H<sup>+</sup> ions at equilibrium, thus the definition of pH based on ''K''<sub>w</sub> is no longer valid. Larger subcellular structures, such as mitochondria, apparently contain only a few free H<sup>+</sup> ions. These results indicate that pH fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H<sup>+</sup> ions as a general source for biochemical reactions. Consequences of this finding are discussed. fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H<sup>+</sup> ions as a general source for biochemical reactions. Consequences of this finding are discussed.)