Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Rowley 2017 J Nutr Biochem

From Bioblast
Publications in the MiPMap
Rowley TJ, Bitner BF, Ray JD, Lathen DR, Smithson AT, Dallon BW, Plowman CJ, Bikman BT, Hansen JM, Dorenkott MR, Goodrich KM, Ye L, O'Keefe SF, Neilson AP, Tessem JS (2017) Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration. J Nutr Biochem 49:30-41.

» PMID: 28863367

Rowley TJ, Bitner BF, Ray JD, Lathen DR, Smithson AT, Dallon BW, Plowman CJ, Bikman BT, Hansen JM, Dorenkott MR, Goodrich KM, Ye L, O'Keefe SF, Neilson AP, Tessem JS (2017) J Nutr Biochem

Abstract: A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients.

Copyright © 2017 Elsevier Inc. All rights reserved. Keywords: Catechin, Cocoa, Insulin secretion, Mitochondrial respiration, Nrf2, β-Cell Bioblast editor: Kandolf G O2k-Network Lab: US UT Provo Bikman BT


Labels: MiParea: Respiration, Exercise physiology;nutrition;life style, Pharmacology;toxicology  Pathology: Diabetes 

Organism: Rat  Tissue;cell: Islet cell;pancreas;thymus  Preparation: Permeabilized cells  Enzyme: Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase 

Coupling state: OXPHOS, ET  Pathway: N, S, NS, ROX  HRR: Oxygraph-2k 

Labels, 2017-11