Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Massoz 2017 Microbiology Monographs

From Bioblast
Publications in the MiPMap
Massoz S, Cardol P, González-Halphen D, Remacle C (2017) Mitochondrial bioenergetics pathways in Chlamydomonas. In: Hippler M (ed) Chlamydomonas: Molecular genetics and physiology. Microbiology Monographs 30:59-95. Springer, Cham. https://doi.org/10.1007/978-3-319-66365-4_3.

» [Microbiology Monographs Springer link]

Massoz S, Cardol P, Gonzalez-Halphen D, Remacle C (2017) Microbiology Monographs

Abstract: Mitochondrion is the site where the Krebs cycle and oxidative phosphorylation (OXPHOS) take place. After a brief overview of Krebs cycle and acetate metabolism in Chlamydomonas, this chapter focuses on OXPHOS components. OXPHOS is composed of five major multiprotein complexes: NADH:ubiquinone oxidoreductase (complex I), succinate dehydrogenase (complex II), ubiquinone:cytochrome c oxidoreductase (complex III), cytochrome c oxidase (complex IV), and ATP synthase. Three complexes (complexes I, III, and IV) pump protons from the matrix to the intermembrane space (IMS) and build a gradient which is used by ATP synthase to produce ATP. In Chlamydomonas and other eukaryotes, proteins forming these complexes have a dual genetic origin. A few proteins, mostly hydrophobic polypeptides, are mitochondrion-encoded, while the vast majority are nucleus-encoded and imported from the cytoplasm. Here we will review our current knowledge about these complexes.

Bioblast editor: Gnaiger E

Massoz 2017 Microbiology Monographs CORRECTION.png

Correction: FADH2 and Complex II

Ambiguity alert.png
FADH2 is shown as the substrate feeding electrons into Complex II (CII). This is wrong and requires correction - for details see Gnaiger (2024).
Gnaiger E (2024) Complex II ambiguities ― FADH2 in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470 - »Bioblast link«

Labels:






Chlamydomonas