Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Cai 2021 Free Radic Biol Med

From Bioblast
Publications in the MiPMap
Cai H, Bian X, Chen L, Zhang N, Li L, Tang W, Liu X, Li Z (2021) Selective intra-arterial brain cooling induces cerebral protection against ischemia/reperfusion injury through SENP1-Sirt3 signaling. Free Radic Biol Med 171:272-83.

ยป PMID: 34019931 Open Access

Cai Heng, Bian Xiyun, Chen Liangyu, Zhang Nan, Li Lili, Tang Wei, Liu Xiaozhi, Li Zhiqing (2021) Free Radic Biol Med

Abstract: Although it is well known that selective intra-arterial cooling (SI-AC) elicits cerebral protection against ischemia/reperfusion (I/R) injury, the underlying mechanism remains unclear. This study aimed to determine whether SI-AC can protect against cerebral I/R injury by inhibiting oxidative stress and mitochondrial dysfunction through regulation of Sirt3 deSUMOylation via SENP1.

All mice were subjected to 2 h of cerebral ischemia followed by 24 h of reperfusion. SI-AC treatment was performed by infusion with cold saline (10 ยฐC, 20 mL/kg) for 15 min through a microcatheter placed in the internal carotid artery immediately before reperfusion. The infarct volume, survival rate, neurological deficit scores, behavioral parameters, histopathology findings, and apoptosis were assessed. HT22 cells were subjected to 2 h of oxygen and sugar deprivation (OGD) and 22 h of reoxygenation. HA-SUMO1, Flag-Sirt3, a Sirt3 mutation plasmid (Flag-Sirt3 K288R), His-SENP1, and SENP1 small interfering RNA were transfected into HT22 cells 48 h before OGD. Apoptosis-related proteins were analyzed by western blotting. SUMOylation of Sirt3, acetylation of cyclooxygenase 1 (COX1), superoxide dismutase 2 (SOD2), and isocitrate dehydrogenase 2 (IDH2), the activities of COX1, SOD2, and IDH2, oxidative stress, and mitochondrial dysfunction were evaluated.

Compared with the I/R group, SI-AC decreased cerebral infarct volume and neurological deficit scores and increased motor coordination, exploratory behavior, and memory. Hematoxylin and eosin and Nissl staining showed that SI-CA decreased karyopyknosis, nuclear fragmentation, and nucleolysis, increased neuron density, and decreased the cell apoptosis rate. In addition, Sirt3 was revealed as a target protein of SUMO1. SI-AC attenuated cerebral I/R injury through Sirt3 deSUMOylation via SENP1.

SENP1-mediated deSUMOylation of Sirt3 plays an essential role in SI-AC-induced cerebral protection against I/R injury. Our findings provide a promising therapeutic approach for treatment of acute cerebral I/R injury. โ€ข Keywords: Cerebral ischemia/reperfusion, SENP1, SUMOylation, Selective intra-arterial cooling, Sirt3 โ€ข Bioblast editor: Reiswig R


Labels: MiParea: Respiration, Genetic knockout;overexpression 

Stress:Ischemia-reperfusion, Oxidative stress;RONS  Organism: Mouse  Tissue;cell: Nervous system  Preparation: Isolated mitochondria 


Coupling state: LEAK, OXPHOS  Pathway:HRR: Oxygraph-2k 

2021-07