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Abstract 
 

In eukaryotes membranes are structural components 
that are necessary for compartmentalization of 
function. Membranes consist of a lipid bilayer with a 
multitude of proteins on or in this sandwich. 
Nevertheless, membranes are not solely structural in 
function but also, they serve as basis for cellular 
signaling and metabolism. Membranes vary with 
respect to their lipid composition, protein:lipid ratio, 
thickness, carbohydrate content, etc., and hence their 
functions are not necessarily identical in the different 
compartments. In the mitochondrial inner membrane 
(mtIM), as in its bacterial ancestor, a special 
phospholipid is present. Cardiolipin (CL) is a 
phospholipid consisting of four hydrophobic tails. It 
is essential for the assembly of the electron transfer 
system (ETS) and its components, and hence CL is 
required for efficient mitochondrial bioenergetics. 
Mutations in CL remodeling enzyme encoded by the 
tafazzin gene (TAZ) are associated with a syndrome 
first identified by Dutch scientist Peter Barth, hence 
the name Barth Syndrome. Here, we review recent 
research on this devastating syndrome focusing on CL 
biosynthesis and remodeling and relationship 
between the phospholipid component and 
mitochondrial bioenergetics. We further by exploring 
management and possible future techniques in the 
treatment of this syndrome.  
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1. Definition 
 

Barth syndrome (BTHS) is a rare X-linked inherited disease that mainly affects 

males. It is caused by different mutations in the taffazin (TAZ) gene (Figure 1) [1]. BTHS 

was first described in 1983 by Dr. Peter Barth, a pediatric neurologist, who noticed a high 

infant mortality rate among males in a large pedigree of a family in his native the 

Netherlands. The deaths were linked to heart failure or sepsis [2]. The condition showed 

an X-linked recessive inheritance pattern, and was primarily characterized by dilated 

cardiomyopathy, skeletal myopathy, and neutropenia [2-4]. Barth was interested in 

pursuing the underlying cause of this disease and he observed abnormalities in the 

electron transfer system (ETS) in a patient’s sample [2]. This was consistent with a 

previous discovery of an X-linked case of cardiomyopathy by Neustein in 1979, who also 

noticed mitochondrial abnormalities [5]. In 1991, Richard Kelley illustrated that organic 

aciduria, especially 3-methylglutaconic aciduria, is another feature found in individuals 

with this syndrome [3]. The prevalence of BTHS has been estimated to be 1 in 300 

000−400 000 births. However, recent studies approximate the incidence to be around 1 

case per million males. BTHS manifests mainly in infancy, as 90 % of patients with BTHS 

show symptoms of cardiomyopathy and neutropenia at less than 1 year old. The diagnosis 

of BTHS can be challenging, as 50 % of individuals are diagnosed after 1 year of age [6]. 

 

Figure 1. The disease card. 

Barth syndrome (BTHS) 

and its other used names, 

defective gene and Online 

Mendelian Inheritance in 

Man (OMIM) identification 

numbers. 

 

 

 

 

 

2. Etiology  
 

The primary cause of Barth Syndrome is a genetic mutation in the TAZ gene, which 

is located in the long q arm of chromosome X, most specifically in the Xq28 region [7, 8]. 

The TAZ gene spans 11 kbp and consists of 11 exons with a highly conserved sequence; 

the first two exons are non-coding [1, 7]. Over 160 mutations have been detected and 

identified in all different exons of the TAZ gene [9]. The majority of these are missense 

mutations and small insertion-deletion mutations. However, a small fraction of patients 

exhibited large exon deletions, and even in one case, a whole gene deletion was reported 

[4, 8].  
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Barth Syndrome follows an X-linked recessive inheritance pattern. According to 

the Barth Syndrome Foundation and data collected by the human TAZ gene mutation and 

variation database [10], roughly 13 % of males carry de novo mutations, which were not 

identified in the maternal DNA of somatic cells [4]. However, gonadal mosaicism has been 

recorded, which raises the likelihood that unaffected mothers who do not carry any 

mutations in the TAZ gene in their somatic DNA would pass the mutation through 

gametes that contain a defective gene. It is still possible for females to show symptoms of 

BTHS [4, 8]. This was recorded in a female who had two different defective genes, the first 

had a large deletion of exons 1-5, and the second was a ring form with a large deletion of 

the long arm that included the Xq28 region of the chromosome. Skewed X-inactivation 

can cause females to show symptoms of BTHS with a variation in severity [4]. It has been 

suggested that a post-inactivation selection mechanism might happen causing ETS 

abnormalities or other damaging effects in different cell types [4, 8]. 
 

TAZ gene encodes for 

Tafazzin protein which is a 

phospholipid acyltransferase 

[11] required for the 

remodeling of cardiolipin 

(CL) [12].  CL, or 

diphosphatidylglycerol is a 

dimeric phospholipid (Figure 

2) that is highly abundant in 

the mitochondrial inner 

membrane (mtIM) [13]. In 

fact, CL is the only 

phospholipid specific to 

mitochondria, making up 

about 15−20 % of the total 

phospholipids in the mtIM 

[13]. It assumes essential 

roles in the structure, 

function and physiology of mitochondria. It is implicated in mitochondrial dynamics [14-

16], autophagy [17], mitophagy [18], apoptosis [19], mitochondrial DNA replication [20] 

and mitochondrial bioenergetics and metabolism [21-23]. Moreover, CL is required for 

cristae organization and biogenesis [24], as well as for lipid-protein interaction 

particularly with proteins involved in oxidative phosphorylation such as respiratory 

Complexes I, III, IV, and ATP synthase [25].  
 

  

Figure 2. Structure of CL. A cartoon (left) and molecular 

(right) structures of CL show a wide hydrophilic head 

composed of two phosphates and four hydrophobic tails 

with varying chain lengths (dotted bonds). The structure 

is effectively a diphosphatidylglycerol. 
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2.1.  Properties and biosynthesis of CL  
 

CL is a double phosphatide linked to a glycerol moiety (Figure 2). Depending on 

the cell and tissue types, CL may contain several acyl chain configurations [6]. For 

instance, CL with four linoleoyl species (L4-CL or tetra linoleoyl CL) is normally abundant 

in highly oxidative tissues such as cardiac and skeletal muscles accounting for up to 70-

80 % of total CL [4]. 
 

The biosynthesis of CL (Figure 3) is exclusively located to the mitochondria 

without the involvement of the endoplasmic reticulum. This multistep synthesis starts in 

the mtIM after the import of phosphatidic acid (PA) from the endoplasmic reticulum. The 

enzymatic activation of PA produces cytidine diphosphate-diacylglycerol (CDP-DAG), in a 

reaction catalyzed by CDP-DAG synthase (CDS). CDP-DAG is then converted to 

phosphatidylglycerol phosphate (PGP) by condensing with glycerol 3-phosphate (Gp). 

This step, which is catalyzed by PGP synthase (PGPS), is the committed step in 

synthesizing CL. Phosphatidylglycerol phosphate phosphatase (PGPP) then 

dephosphorylates PGP producing phosphatidylglycerol (PG), which ultimately condenses 

with another CDP-DAG molecule via CL synthase (CLS), a protein found in the inner leaflet 

of the mtIM facing the matrix, generating nascent (premature) CL [26, 27].  

 

Figure 3. De novo biosynthesis of CL. The pathway of CL generation occurs in the 

mitochondrial inner membrane facing the mitochondrial matrix where a sequence of four 

enzymes converts phosphatidic acid to nascent CL molecule. Note that the tails of CL are 

arbitrary and do not reflect the actual length of the acyl chains which vary. CDS, CDP-DAG 

synthase; CLS, CL synthase; CMP, cytidine monophosphate; Gp (G3P in figure), glycerol 3-

phosphate; PGPP, phosphatidylglycerol phosphate phosphatase; PGPS, 

phosphatidylglycerol phosphate synthase; Pi, inorganic phosphate; mtIM (MIM in figure), 

mitochondrial inner membrane; mtOM (MOM in figure), mitochondrial outer membrane. 
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Nascent cardiolipin is then remodeled by exchanging its fatty acyl moieties (Figure 

4). Remodeling (Figure 4) starts by the deacylation of one acyl group by several 

phospholipases of the PLA2 family [28, 29] producing monolysocardiolipin (MLCL). 

Tafazzin is a coenzyme A-independent acyltransferase that reacylates MLCL to form the 

mature CL molecule [30, 31]. It is noteworthy that Tafazzin is not the only CL remodeling 

enzyme as other coenzyme A-dependent acyltransferases can also acylate MLCL [32]. 

Disruption in remodeling cardiolipin would result in transforming MLCL into 

dilysocardiolipin (DLCL) by PLA2 followed by the degradation of CL [26]. Mutations in the 

TAZ gene results in a reduction in the formation of mature forms of CL such as L4-CL and 

an increase in the intermediate species with different acyl compositions (MLCL) [33]. This 

disrupts and increases the ratio of MLCL to L4-CL [4, 8]. In fact, analysis of L4-CL content 

in fibroblasts is a specific biochemical approach to detect this disorder [6]. In BTHS, MLCL 

accumulates due to impaired Tafazzin activity, which leads to abnormal mitochondrial 

structure with inefficient oxidative phosphorylation [22, 34-36]. 
 

 
 

Figure 4. Remodeling of CL. CL is remodeled by the removal of its fatty acyl chains by 

phospholipase 2A and reinsertion of new fatty acyl moieties by different enzymes 

including tafazzin, to produce L4-CL. Lyso-CL that is generated after the action of PLA2 and 

left unremodeled is later degraded. Note that the tails of CL are arbitrary and do not 

reflect the actual length of the acyl chains which vary. FFA, free fatty acid; L4-CL or tetra 

linoleoyl CL; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; MLCL, 

monolyso-CL; PLA2, phospholipase A2. 
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2.2. CL and bioenergetics 
 

Respiratory complexes reside in the mtIM and carry electrons from NADH or 

succinate ultimately to molecular oxygen, while pumping protons in the process. Reentry 

of protons down their concentration gradient results in a concomitant generation of ATP 

via ATP synthase. CL is both highly acidic and hydrophobic enabling it to interact 

favorably with the respiratory complexes embedded in the mtIM. Such an interaction is 

required for the optimal function of these proteins [37-39]. CL has been shown to interact 

with all components of the ETS. Indeed, specific binding sites for CL were observed in 

Complexes I, III and IV, which are required for the electron transfer from NADH [40-42]. 

Other in vitro studies have demonstrated strict dependence of respiratory Complex IV 

and ATP synthase on CL [43, 44]. Multiple molecules of CL were present in Complexes III 

and IV and the removal of these molecules led to the dissociation of the subunits and the 

loss of activity, indicating an essential role of CL in maintenance of structure and function 

of respiratory complexes [40]. Using molecular dynamics simulation and resolving of the 

crystal structure, CL was shown to spontaneously locate near the catalytic site of Complex 

III [45]. CL is found buried in the crevices of integral membrane proteins of the ETS, 

between the transmembrane helices [42]. Depending on the complex one or more CL 

molecules associate with it (Table 1). Those CL molecules are thought to glue complexes 

together and are required for their full functioning, including proton translocation [40, 

41]. 
 

In vivo, respiratory complexes are rarely present as represented in biochemistry 

books, as individual entities; they are organized into supercomplexes termed 

respirasomes [46-51]. There are multiple conformations and compositions of 

respirasomes depending on the origin of mitochondria among other things [51, 52]. 

Respirasomes are thought to increase substrate channeling and increase efficiency of 

electron transfer. CL has been found to be instrumental in the formation and proper 

functioning of these supercomplexes [38, 53-55]. The tight binding of CL to Complex IV is 

important for the formation of Complex III and Complex IV tetramers [54]. Moreover, CL 

was demonstrated to be involved in the supramolecular organization of ATP synthase, 

carnitine palmitoyl-transferase, creatine phosphokinase, and other mtIM proteins [26, 

56]. CL is therefore essential for the assembly of higher order mitochondrial complexes 

and supercomplexes. Mitochondria bioenergetics thus depend strongly on CL [40, 45, 57]. 

Mutations in the TAZ gene can result in decreased mitochondrial enzymatic activity, 

especially the respiration rate, lowering the optimum ATP production. This decrease in 

ATP synthesis is counteracted and compensated by increased mitochondrial content [19] 

and hypertrophic cardiomyopathy [58]. 
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Table 1. CL molecules in the solved crystal or cryo-EM structures of the respiratory 
complexes.  
 

Complex Species CL molecules Refs. 
I (NADH dehydrogenase) Ovine heart 4 [59] 
II (succinate dehydrogenase) E. coli 1 [60] 
III (cytochrome c 
oxidoreductase) 

S. cerevisiae 1 [41, 61] 

IV (cytochrome c oxidase) Bovine heart 2 [62] 

 

3. Clinical Manifestations  
 

 

Table 2. Clinical manifestations of Barth syndrome [4]. 
 

Systems Major (Signs/Symptoms) Minor (Signs/Symptoms) 

Cardiovascular • Dilated Cardiomyopathy 
• Left Ventricular Non-

Compaction 
• Prolonged corrected QT 

interval  

• Endocardial Fibroelastosis 
•  Ventricular arrhythmia/Sudden 

cardiac death 
• Undulating Cardiomyopathy 
• Hypertrophic Cardiomyopathy 

(rarely) 

Hematological & 

Infectious 
• Neutropenia 
• Recurrent aphthous ulcers & 

sore gums 
• Perianal dermatitis 

• Recurrent bacterial infections 
• Septicemia 

Neuromuscular • Delayed motor milestones 
• Exercise intolerance 
• Abnormal fatigability 
• Proximal myopathy 

 

 

 

Neurological • Mild learning disabilities 
• Attention deficits 

• Strokes (cardiac embolism) 

Endocrine and 

Metabolic 
• 3-methylglutaconic aciduria 
• Constitutional bone delay 

with delayed bone age 
• delayed puberty 

• Hypercholesterolemia  
• Hypoglycemia 
• Lactic acidosis (often 

accompanies cardiac failure) 
• Osteopenia 

Dysmorphic 

features 
• Deep-set eyes 
• Large ears (older boys) 
• Full cheeks 
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4. Diagnosis  
 

The clinical diagnosis of BTHS had been based on the triad of neutropenia, 

cardiomyopathy, and high levels of 3-methylglutaconic acid (3-MGA) in urine and plasma. 

Cardiomyopathy is present in approximately 70 % of patients with BTHS, and many BTHS 

patients have a 5− to 20−fold increase in 3-MGA levels. However, some BTHS patients 

with cardiomyopathy were not diagnosed with BTHS even though they exhibited other 

clinical manifestations such as muscle weakness and growth delay, because these patients 

had normal 3-MGA levels in urine. Therefore, measuring 3-MGA as a tool for diagnosing 

BTHS is insufficient.  
 

Measurement of the ration of MLCL to CL ratio in dried blood spot specimens is a 

better tool for the diagnosis of BTHS. It is critical to measure the ratio because many BTHS 

patients have normal levels of CL but an elevated MLCL:CL ratio. Thus, measuring the 

MLCL:CL ratio is considered a sensitive and 100 % specific test for the diagnosis of BTHS. 

Once elevated MLCL:CL ratio has been detected, sequencing the TAZ gene and detecting 

any mutations is considered as a final confirmatory test for the diagnosis of BTHS [36].  

 

5. Disease Management  
 

Many BTHS patients show responsiveness to drugs that are usually used to 

manage standard heart failure, including beta blockers, angiotensin converting enzyme 

inhibitors, digoxin and diuretics [63]. It is recommended to observe BTHS patients for any 

signs of ventricular arrhythmia or other symptoms such as syncope. Such findings would 

require additional testing and the placement of an implantable cardioverter-defibrillator 

should be considered [36]. 
 

Cardiac transplantation is another treatment protocol that has shown good results 

in general, even though it carries high pre-operative risks. In some boys with severe 

cardiac dysfunction, left ventricular assist devices have been used to aid them until a heart 

donor can be found. Using an assist device has major risks including infection caused by 

neutropenia, and strokes caused by clots forming in the chambers of the heart [4].  
 

Neutropenia is usually treated with subcutaneous granulocyte colony-stimulating 

factor (G-CSF). The dose and frequency of the G-CSF injection varies depending on the 

severity of neutropenia, drug responses, and infections. The goal of using G-CSF is to 

increase the average count of neutrophils rather than cure neutropenia or normalize the 

neutrophil count. This treatment approach has resulted in noticeable improvements, as it 

reduces bacterial infections, lethargy, and mouth ulcers [4]. Neutropenia can also be 

managed with prophylactic antibiotics along with the G-CSF injections, which lower the 

risk of serious infections [64].  
 

Many promising experimental therapeutic strategies to treat or even cure Barth 

syndrome are in progress, including lipid replacement therapy, which is the use of oral 
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supplements containing cellular phospholipids and antioxidants to treat various lipid 

deficiencies and syndromes [65]. These oral supplements are protected against oxidative 

damage during storage, ingestion, digestion, and absorption by the introduction of 

antioxidants, and they are protected from chemical enzymatic activity and bile by using 

protective molecules to bind to phospholipid micelles non-covalently [36, 66, 67]. 

Elamipretide, also known as Bendavia [68], is a synthetic lipophilic tetrapeptide 

experimental drug with the potential to treat Barth Syndrome. Elamipretide has the 

ability to penetrate cellular and mitochondrial membranes by diffusion where it gets 

associated with ionic phospholipids, especially cardiolipin in the mtIM. This peptide-lipid 

interaction stabilizes ETS complexes and results in increased ATP synthesis [69]. There 

are only a few clinical trials to test the efficacy and tolerability of elamipretide. The initial 

results are promising, as they showed actual improvement in ATP synthesis and positive 

effects on the left ventricular volumes [70]. However, further studies and tests are 

required to ensure the safety of this product on the long term. Moreover, TAZ gene 

replacement therapy, mitochondria-targeted antioxidants, induced pluripotent stem cells 

[7] have been used as possible treatment strategies.  
 

In addition to the pharmacological and surgical treatment of the disease, a team of 

different specialists consisting of psychologists, speech and language therapists, 

educational support workers, as well as others, are needed for achieving a top-level 

management of the disease [1]. 

 

6. Conclusions and Future Directions 
 

Barth syndrome is a rare X-linked disease where the TAZ gene is mutated 

rendering the protein product, Tafazzin, nonfunctional. Tafazzin is responsible for the CL 

remodeling, specific to the mtIM. CL was found to be associated with different 

mitochondrial proteins, especially those involved in oxidative phosphorylation and 

electron transfer pathway complexes. CL stabilizes these complexes and proteins which 

enhances ATP production and maintains the whole mitochondrial membrane. Barth 

syndrome patients struggle from cardiomyopathy, myopathy, neutropenia, and other 

symptoms as a result of this mutation. Currently a known cure or a complete treatment 

for Barth syndrome is lacking. However, multiple strides have been made in disease 

management using varying techniques and treatment plans. Clinical studies and basic 

mitochondrial research are ongoing to find a way to cure Barth syndrome using novel 

drugs, gene therapy, lipid replacement therapy, and others.  
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Abbreviations 
 

3-MGA 
BTHS 
CDP-DAG 
CLS 
CDS 
CL 
DLCL 
ETS 
FFA 
Gp 
G-CSF 
mtIM 

3-methylglutaconic acid  
Barth syndrome 
cytidine diphosphate-diacylglycerol  
CL synthase  
CDP-DAG synthase  
Cardiolipin 
dilyso-CL 
electron transfer system  
free fatty acid 
glycerol 3-phosphate  
granulocyte colony-stimulating factor  
mitochondrial inner membrane 

L4-CL 
LPC 
LPE 
MLCL 
PA 
PC 
PE 
PGP 
PFPP 
PFPS 
PLA2 
TAZ 

tetra linoleoyl CL  
lysophosphatidylcholine 
lysophosphatidylethanolamine 
monolyso-CL  
phosphatidic acid  
phosphatidylcholine  
phosphatidylethanolamine 
phosphatidylglycerol phosphate  
phosphatidylglycerol phosphate phosphatase  
phosphatidylglycerol phosphate synthase  
phospholipase A2 
Tafazzin gene   
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