Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "The file type generated by [[DatLab]] is *.DLD.". Since there have been only a few results, also nearby values are displayed.

Showing below up to 125 results starting with #1.

View (previous 250 | next 250) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Taurine  + (Taurine, or 2-Aminoethan sulfonic acid, is ā€¦ Taurine, or 2-Aminoethan sulfonic acid, is one of the most abundant low-molecular-weight organic constituents in animals and humans. It has a multitude of functions in different types of tissue, one of which is the stabilization of membranes. Because of this and its antioxidative effect, taurine is a component of the respiration media MiR05 and MiR06 to preserve mitochondrial function. MiR06 to preserve mitochondrial function.)
  • Chinese Society of Mitochondrial Research and Medicine  + (The '''Chinese Society of Mitochondrial Research and Medicine''' (Chinese-Mit) is a member of [[Asian Society for Mitochondrial Research and Medicine|ASMRM]].)
  • Crabtree effect  + (The '''Crabtree effect''' describes the ob ā€¦ The '''Crabtree effect''' describes the observation that respiration is frequently inhibited when high concentrations of glucose or fructose are added to the culture medium - a phenomenon observed in numerous cell types, particularly in proliferating cells, not only tumor cells but also bacteria and yeast. The Pasteur effect (suppression of glycolysis by oxygen) is the converse of the Crabtree effect (suppression of respiration by high concentration of glucose or fructose).igh concentration of glucose or fructose).)
  • Default label  + (The '''Default label''' is the system default value for the axis label. These labels are changed automatically, according to the selected channel and unit. To change this label enter a [[Custom label]].)
  • Directory of Open Access Journals  + (The '''Directory of Open Access Journals''' is a free online directory that indexes and provides access to open access peer-reviewed journals.)
  • Exclusion criteria  + (The '''Exclusion criteria''' include factors or characteristics that make the recruited population ineligible for the outcome parameter. With the [[Inclusion criteria]], this factor must be a cofounder for the outcome parameter)
  • Faraday constant  + (The '''Faraday constant''' ''F'' links the ā€¦ The '''Faraday constant''' ''F'' links the electric charge [C] to amount [mol], and thus relates the [[electrical format]] <u>''e''</u> [C] to the [[molar format]] <u>''n''</u> [mol]. The Farady constant, ''F'' = ''e''Ā·''N''<sub>A</sub> = 96 485.33 C/mol, is the product of [[elementary charge]], ''e'' = 1.602176634āˆ™10<sup>-19</sup> C/x, and the [[Avogadro constant]], ''N''<sub>A</sub> = 6.02214076āˆ™10<sup>23</sup> x/mol. The dimensionless unit [x] is not explicitely considered by IUPAC.= 6.02214076āˆ™10<sup>23</sup> x/mol. The dimensionless unit [x] is not explicitely considered by IUPAC.)
  • Inclusion criteria  + (The '''Inclusion criteria''' are based on ā€¦ The '''Inclusion criteria''' are based on key features of the target population that the researchers will use to answer their question. These criteria should identify the study population in a consistent, reliable, uniform, and objective manner. With the [[Exclusion criteria]], this factor must be a cofounder for the outcome parametert be a cofounder for the outcome parameter)
  • International Standard Serial Number  + (The '''International Standard Serial Numbe ā€¦ The '''International Standard Serial Number''', ISSN, is a code used to identify periodical publications, independent of which media are used (print and/or electronic). - [[Bioenergetics Communications]], BEC: [https://portal.issn.org/resource/ISSN/2791-4690 ISSN 2791-4690]rg/resource/ISSN/2791-4690 ISSN 2791-4690])
  • International System of Units  + (The '''International System of Units''' (S ā€¦ The '''International System of Units''' (SI) is the modern form of the metric system of [[unit]]s for use in all aspects of life, including international trade, manufacturing, security, health and safety, protection of the environment, and in the basic science that underpins all of these. The system of quantities underlying the SI and the equations relating them are based on the present description of nature and are familiar to all scientists, technologists and engineers. </br></br>The definition of the SI units is established in terms of a set of seven defining constants. The complete system of units can be derived from the fixed values of these defining constants, expressed in the units of the SI. These seven defining constants are the most fundamental feature of the definition of the entire system of units. These particular constants were chosen after having been identified as being the best choice, taking into account the previous definition of the SI, which was based on seven base units, and progress in science (p. 125).e units, and progress in science (p. 125).)
  • International Union of Pure and Applied Chemistry, IUPAC  + (The '''International Union of Pure and App ā€¦ The '''International Union of Pure and Applied Chemistry''' (IUPAC) celebrated in 2019 the 100<sup>th</sup> anniversary, which coincided with the [https://iupac.org/united-nations-proclaims-international-year-periodic-table-chemical-elements/ International Year of the Periodic Table of Chemical Elements (IYPT 2019)]. IUPAC {''Quote''} notes that marking Mendeleev's achievement will show how the periodic table is central to connecting cultural, economic, and political dimensions of global society ā€œthrough a common languageā€ {''end of Quote''} (Horton 2019). 2019 is proclaimed as the [https://iupac.org/united-nations-proclaims-international-year-periodic-table-chemical-elements/ International Year of the Periodic Table of Chemical Elements (IYPT 2019)]. For a '''common language''' in mitochondrial physiology and bioenergetics, the IUPAC ''Green book'' (Cohen et al 2008) is a most valuable resource, which unfortunately is largely neglected in bioenergetics textbooks. Integration of [[ergodynamics |open systems and non-equilibrium thermodynamic]] approaches remains a challenge for developing a common language (Gnaiger 1993; [[BEC 2020.1]]).C 2020.1]]).)
  • Korean Society of Mitochondrial Research and Medicine  + (The '''Korean Society of Mitochondrial Research and Medicine''' (KSMRM) is a member of [[Asian Society for Mitochondrial Research and Medicine|ASMRM]].)
  • MitoFit DOI Data Center  + (The '''MitoFit DOI Data Center''' is respo ā€¦ The '''MitoFit DOI Data Center''' is responsible for the provision of digital identifiers, for the storage and ensuring the persistence of the scientific objects, the provision of access, review process and maintenance of the Metadata, and quality control.ance of the Metadata, and quality control.)
  • Mitochondrial Physiology Network  + (The '''Mitochondrial Physiology Network''' is the on-line Oroboros journal.)
  • N/NS pathway control ratio  + (The '''N/NS [[pathway control ratio]] ā€¦ The '''N/NS [[pathway control ratio]]''' is obtained when succinate is added to N-linked respiration in a defined coupling state. N and NS are abbreviations for respiration in the [[N-pathway control state]] (with pyruvate, glutamate, malate, or other ETS competent N-linked substrate combinations) and the [[NS-pathway control state]] (N in combination with succinate). NS indicates respiration with a cocktail of substrates supporting the N- and S-pathways.bstrates supporting the N- and S-pathways.)
  • N/S pathway control ratio  + (The '''N/S [[pathway control ratio]] ā€¦ The '''N/S [[pathway control ratio]]''' is obtained from SUIT protocols when the [[N-pathway control state |N-pathway flux]] and [[S-pathway control state |S-pathway flux]] are measured in the same [[coupling control state]]. The N/S pathway control ratio may be larger or smaller than 1.0, depending on the mitochondrial source and various mitochondrial injuries. The S-pathway control state may be selected preferentially as reference state, if mitochondria are studied with respect to N-pathway injuries.tudied with respect to N-pathway injuries.)
  • NS-N pathway control efficiency  + (The '''NS-N [[pathway control efficiency]]''', ''j''<sub>NS-N</sub> = 1-N/NS, expresses the fractional change of flux when succinate is added to the [[N-pathway control state]] in a defined [[coupling-control state]].)
  • NS-S pathway control efficiency  + (The '''NS-S pathway control efficiency''' ā€¦ The '''NS-S pathway control efficiency''' expresses the relative stimulation of succinate supported respiration (S) by NADH-linked substrates (N), with the [[S-pathway control state]] as the [[background state]] and the [[NS-pathway control state]] as the [[reference state]]. In typical [[SUIT protocol]]s with [[Electron-transfer-pathway state |type N and S substrates]], flux in the [[NS-pathway control state]] NS is inhibited by [[rotenone]] to measure flux in the [[S-pathway control state]], S(Rot) or S. Then the NS-S pathway control efficiency in the ET-coupling state is</br> ''j''<sub>(NS-S)''<sub>E</sub>''</sub> = (NS''<sub>E</sub>''-S''<sub>E</sub>'')/NS''<sub>E</sub>''</br>The NS-S pathway control efficiency expresses the fractional change of flux in a defined [[coupling-control state]] when inhibition by [[rotenone]] is removed from flux under S-pathway control in the presence of a type N substrate combination. Experimentally rotenone Rot is added to the NS-state. The reversed protocol, adding N-substrates to a S-pathway control background does not provide a valid estimation of S-respiration with succinate in the absence of Rot, since [[oxaloacetate]] accumulates as a potent inhibitor of [[succinate dehydrogenase]] CII.[[succinate dehydrogenase]] CII.)
  • O2k signal line  + (The '''O2k signal line''' is underneath th ā€¦ The '''O2k signal line''' is underneath the [[O2k status line]]. It shows, depending on the [[O2k series]], on the left side the O2k number, the time of the experiment, the oxygen raw signal of each chamber, the [[block temperature]], the [[barometric pressure]], the Peltier power, the recorded amperometric and potentiometric raw signal, the enviromental (room) temperature and the signal from internal sensors recording the humidity and temperature of the electronics. On the right side of the O2k signal line the current [[User code - DatLab|user]], the DatLab version and the [[O2k serial number]] are displayed.[[O2k serial number]] are displayed.)
  • O2k-Accessory Box  + (The '''O2k-Accessory Box''' contains components of the [[POS-Service Kit]] and the [[O2k-Assembly Kit]] and is shipped with the O2k.)
  • O2k-Assembly Kit  + (The '''O2k-Assembly Kit''' is a component ā€¦ The '''O2k-Assembly Kit''' is a component of the [[Oroboros O2k]], consisting of 2 [[Stirrer-Bar\white PVDF\15x6 mm|PVDF Stirrer-Bars]], 2 [[PEEK]] O2k-Stoppers, [[OroboPOS-Connector]]s for O2k-series A-I and NextGen-O2k series XA (attached to the [[O2k-Main Unit]]) and cables (power supply, USB-connection). Several components of the O2k-Assembly Kit are included in the [[O2k-Accessory Box]] either for shipment or for storage.[[O2k-Accessory Box]] either for shipment or for storage.)
  • O2k-Fluo Smart-Module  + (The '''O2k-Fluo Smart-Module''' is an ampe ā€¦ The '''O2k-Fluo Smart-Module''' is an amperometric add-on module to the [[Startup_O2k-Respirometer| O2k-Respirometer]], adding a new dimension to high-resolution respirometry. Optical sensors are inserted through the front window of the O2k-glass chambers, for measurement of hydrogen peroxide production (AmplexĀ® UltraRed), ATP production (Magnesium Greenā„¢), mt-membrane potential (Safranin, TMRM), Ca<sup>2+</sup> (Calcium Greenā„¢), and numerous other applications open for O2k-user innovation. </br></br>::: Ā» [[MiPNet28.09 O2k-Fluo Smart-Module manual]]et28.09 O2k-Fluo Smart-Module manual]])
  • O2k-Main Basic  + (The '''O2k-Main Basic''' is an integral el ā€¦ The '''O2k-Main Basic''' is an integral element of the [[O2k-Main Unit]]. The Oroboros O2k Main Basic has the following components:</br>*Stainless-Steel Housing</br>*Switching power supply</br>*Microprocessor for integrated control, A/D converters and data handling</br>*Copper-Block with windows to 2 O2k-Chambers</br>*2 Amperometric OroboPOS Plugs</br>*TIP2k socket, providing the basis for add-on of the [[TIP2k]]</br>*2 Potentiometric Plugs for ion sensitive electrodes (ISE: TPP+, Ca2+; pH), providing the basis for add-on of the [[O2k-MultiSensor]] Modules</br>*2 Amperometric Plugs, providing the basis for add-on of the [[O2k-Fluo LED2-Module]] or NO (H<sub>2</sub>S) sensors.</br>*USB-Port for connection with DatLab (PC or laptop not included)for connection with DatLab (PC or laptop not included))
  • O2k-Main Unit  + (The '''O2k-Main Unit''' is a component of ā€¦ The '''O2k-Main Unit''' is a component of the [[O2k-Core]]. The O2k-Main Unit consists of functionally defined, integral elements, the ([[O2k-Main Basic]], [[O2k-Peltier Temperature Control]], two [[O2k-Electromagnetic Stirrer Twin-Control]] units, two [[O2k-Amperometric OroboPOS Twin-Channel]]s, [[O2k-Barometric Pressure Transducer]]), which cannot be obtained separately.[[O2k-Barometric Pressure Transducer]]), which cannot be obtained separately.)
  • O2k chamber volume calibration  + (The '''O2k-chamber volume calibration''' has to be done before getting started with the [[Oroboros O2k]] to guarantee a standard [[chamber volume]] of 2.0 mL.)
  • O2k-ticket system  + (The '''O2k-ticket system''' is a customer ā€¦ The '''O2k-ticket system''' is a customer support platform based on Zammad. This system automatically attributes an unique Ticket number (which is visible on the subject of your e-mail) to each received customer inquiry. For an easy follow-up, all the related correspondence is collected under this Ticket number. </br></br>* Contact us: '''[email protected]'''</br></br>In order to provide a helpful and reliable support regarding your O2k/equipment, we suggest to include in your inquiries:</br></br>* your affiliation and your O2k-serial number - ''See'': [[O2k_series]]</br></br>* DLD file(s) with your reported issue accompanied by a brief explanation. issue accompanied by a brief explanation.)
  • Oxygen sensor test  + (The '''O<sub>2</sub> sensor te ā€¦ The '''O<sub>2</sub> sensor test''' is an important component of [[MitoPedia: Oroboros QM |Oroboros Quality Management]]. The [[OroboPOS]] test is described in detail in [[MiPNet06.03 POS-calibration-SOP]], is performed after switching on the [[Oroboros O2k]], and is required as a basis of technical service of the instrument.red as a basis of technical service of the instrument.)
  • OXPHOS International  + (The '''OXPHOS International''' web portal is a repository of information useful to scholars studying mitochondria. The site is operated as a private "special interests" community hub.)
  • Oroboros USB-flash drive  + (The '''Oroboros USB-flash drive''' is deli ā€¦ The '''Oroboros USB-flash drive''' is delivered with the [[Oroboros O2k]]. Copy the folder "Oroboros O2k-Course on HRR" from the '''Oroboros USB-flash drive''' to your computer. This folder contains the DatLab installation program as well as tools to find topics, O2k-manuals and O2k-protocols with corresponding DatLab demo files and templates for training with [[DatLab]].[[DatLab]].)
  • Q-redox state  + (The '''Q-redox state''' reflects the redox ā€¦ The '''Q-redox state''' reflects the redox status of the [[Q-junction]] in the mitochondrial or chloroplast [[ETS|electron transfer system (ETS)]]. [[Coenzyme Q]] (CoQ or Q, [[ubiquinone]]) is a mobile redox component located centrally in the mitochondrial [[ETS]], while plastoquinones are essential mobile components in the photosynthetic system with a similar function. The Q-redox state depends on the balance between reducing capacities of convergent electron entries from fuel substrates into the Q-junction and oxidative capacities downstream of Q to the electron acceptor oxygen. Therefore, deficiencies in the mitochondrial [[ETS]], originating from e.g. the malfunction of respiratory Complexes, can be detected by measuring the changes of the Q-redox state with respect to the respiratory activity.</br></br>A three-electrode system was implemented into the NextGen-O2k to monitor the Q-redox state continuously and simultaneously with respiratory oxygen consumption. Added CoQ2 reflects the mitochondrial Q-redox state when equilibrating both with the detecting electrode and the biological sites (e.g. Complexes I, II and III).ical sites (e.g. Complexes I, II and III).)
  • S/NS pathway control ratio  + (The '''S/NS [[pathway control ratio]] ā€¦ The '''S/NS [[pathway control ratio]]''' is obtained when [[rotenone]] (Rot) is added to the [[NS-pathway control state]] in a defined [[coupling control state]]. The reversed protocol, adding N-type substrates to a [[S-pathway control state]] as the [[background state]] does not provide a valid estimation of S-linked respiration with succinate in the absence of Rot, since [[oxaloacetate]] accumulates as a potent inhibitor of [[succinate dehydrogenase]] (CII).[[succinate dehydrogenase]] (CII).)
  • SUIT protocol pattern  + (The '''SUIT protocol pattern''' describes the type of the sequence of coupling and substrate control steps in a SUIT protocol, which may be liner, orthogonal, or diametral.)
  • Science Citation Index  + (The '''Science Citation Index''' SCI offers bibliographical access to a curated collection of journals across 178 scientific disciplines. The SCI provides gold-standard lists of established journals.)
  • SUIT protocol library  + (The '''Substrate-uncoupler-inhibitor titra ā€¦ The '''Substrate-uncoupler-inhibitor titration (SUIT) protocol library''' contains a sequential list of SUIT protocols (D001, D002, ..) with links to the specific SUIT pages. Classes of [[SUIT|SUIT protocols]] are explained with coupling and substrate control defined for [[mitochondrial preparations]].[[mitochondrial preparations]].)
  • Taiwan Society for Mitochondrial Research and Medicine  + (The '''Taiwan Society for Mitochondrial Research and Medicine''' (TSMRM) is a member of [[Asian Society for Mitochondrial Research and Medicine|ASMRM]].)
  • USB port  + (The '''USB port''' describes the connection between O2k and Computer. With the USB cable connected, select '''USB port''' in the [[Connection window]]. Depending on the O2k series, it is possible to connect with a '''USB port''' or [[Serial port]].)
  • Abscissa  + (The '''abscissa''' is the horizontal axis ā€¦ The '''abscissa''' is the horizontal axis ''x'' of a rectangular two-dimensional graph with the [[ordinate]] ''y'' as the vertical axis. Values ''X'' are placed horizontally from the origin.</br></br>See [[Abscissal X/Y regression |Abscissal ''X''/''Y'' regression]].[[Abscissal X/Y regression |Abscissal ''X''/''Y'' regression]].)
  • Accuracy  + (The '''accuracy''' of a method is the degree of agreement between an individual test result generated by the method and the true value.)
  • Activity  + (The '''activity''' (relative activity) is ā€¦ The '''activity''' (relative activity) is a dimensionless quantity related to the concentration or partial pressure of a dissolved substance. The activity of a dissolved substance B equals the [[concentration]], ''c''<sub>B</sub> [molĀ·L<sup>-1</sup>], at high dilution divided by the unit concentration, ''c''Ā° = 1 molĀ·L<sup>-1</sup>: </br> ''a''<sub>B</sub> = ''c''<sub>B</sub>/''c''Ā°</br>This simple relationship applies frequently to substances at high dilutions <10 mmolĀ·L<sup>-1</sup> (<10 molĀ·m<sup>-3</sup>). In general, the concentration of a [[solute]] has to be corrected for the activity coefficient (concentration basis), ''Ī³''<sub>B</sub>,</br> ''a''<sub>B</sub> = ''Ī³''<sub>B</sub>Ā·''c''<sub>B</sub>/''c''Ā°</br>At high dilution, ''Ī³''<sub>B</sub> = 1. In general, the relative activity is defined by the [[chemical potential]], ''Āµ''<sub>B</sub></br> ''a''<sub>B</sub> = exp[(''Āµ''<sub>B</sub>-''Āµ''Ā°)/''RT'']potential]], ''Āµ''<sub>B</sub> ''a''<sub>B</sub> = exp[(''Āµ''<sub>B</sub>-''Āµ''Ā°)/''RT''])
  • Adenine nucleotide translocase  + (The '''adenine nucleotide translocator''', ā€¦ The '''adenine nucleotide translocator''', ANT, exchanges [[ADP]] for [[ATP]] in an electrogenic antiport across the inner mt-membrane. The ANT is inhibited by [[atractyloside]], [[carboxyatractyloside|carboxyatractyloside]] and [[bongkrekik acid]]. The ANT is a component of the [[phosphorylation system]].[[phosphorylation system]].)
  • Advantage of preprints  + (The '''advantages of preprints''', the excitement and concerns about the role that preprints can play in disseminating research findings in the life sciences are discussed by N Bhalla (2016).)
  • Aerobic  + (The '''aerobic''' state of metabolism is d ā€¦ The '''aerobic''' state of metabolism is defined by the presence of oxygen (air) and therefore the potential for oxidative reactions (ox) to proceed, particularly in [[oxidative phosphorylation]] (OXPHOS). Aerobic metabolism (with involvement of oxygen) is contrasted with [[anaerobic]] metabolism (without involvement of oxygen): Whereas anaerobic ''metabolism'' may proceed in the absence or presence of oxygen (anoxic or oxic ''conditions''), aerobic ''metabolism'' is restricted to oxic ''conditions''. Below the [[critical oxygen pressure]], aerobic ATP production decreases.[[critical oxygen pressure]], aerobic ATP production decreases.)
  • Amount of substance  + (The '''amount of substance''' ''n'' is a b ā€¦ The '''amount of substance''' ''n'' is a base physical quantity, and the corresponding SI unit is the [[mole]] [mol]. Amount of substance (sometimes abbreviated as 'amount' or 'chemical amount') is proportional to the number ''N''<sub>''X''</sub> of specified elementary entities ''X'', and the universal proportionality constant is the reciprocal value of the [[Avogadro constant]] ([[Bureau International des Poids et Mesures_2019_The International System of Units (SI) |SI]]),</br> ''n''<sub>''X''</sub> = ''N''<sub>''X''</sub>Ā·''N''<sub>A</sub><sup>-1</sup></br></br>''n''<sub>''X''</sub> contained in a system can change due to internal and external transformations,</br> d''n''<sub>''X''</sub> = d<sub>i</sub>''n''<sub>''X''</sub> + d<sub>e</sub>''n''<sub>''X''</sub></br></br>In the absence of nuclear reactions, the amount of any atom is conserved, ''e.g.'', for carbon d<sub>i</sub>''n''<sub>C</sub> = 0. This is different for chemical substances or ionic species which are produced or consumed during the [[advancement]] of a reaction r, </br>:::: [[File:Amount dn.png|100px]]</br>A change in the amount of ''X''<sub>''i''</sub>, d''n''<sub>''i''</sub>, in an open system is due to both the internal formation in chemical transformations, d<sub>r</sub>''n''<sub>''i''</sub>, and the external transfer, d<sub>e</sub>''n''<sub>''i''</sub>, across the system boundaries. d''n''<sub>''i''</sub> is positive if ''X''<sub>''i''</sub> is formed as a product of the reaction within the system. d<sub>e</sub>''n''<sub>''i''</sub> is negative if ''X''<sub>''i''</sub> flows out of the system and appears as a product in the surroundings ([[Cohen 2008 IUPAC Green Book]]).[Cohen 2008 IUPAC Green Book]]).)
  • Amplitude  + (The '''amplitude''' of the [[absorbance spectrum]] ā€¦ The '''amplitude''' of the [[absorbance spectrum]] can be described in terms of the [[absorbance]] differences between the characteristic peaks (absorbance maxima) and troughs (absorbance minima) (see [[absorbance spectrum]]) for substances present in the sample.[[absorbance spectrum]]) for substances present in the sample.)
  • Background state  + (The '''background state''' Y (background r ā€¦ The '''background state''' Y (background rate ''Y<sub>X</sub>'') is the non-activated or inhibited respiratory state at background rate, which is low in relation to the higher rate ''Z<sub>X</sub>'' in the [[reference state]] Z. The transition from the background state to the reference state is a step change. A [[metabolic control variable]] ''X'' (substrate, activator) is added to the background state to stimulate flux to the level of the reference state. Alternatively, the metabolic control variable ''X'' is an inhibitor, which is present in the background state Y, but absent in the reference state Z. The background state is the baseline of a single step in the definition of the [[flux control efficiency]]. In a sequence of step changes, the common [[baseline state]] is the state of lowest flux in relation to all steps, which can be used as a [[baseline correction]].[[baseline correction]].)
  • Baseline state  + (The '''baseline state''' in a sequence of ā€¦ The '''baseline state''' in a sequence of step changes is the state of lowest flux in relation to all steps, which can be used as a [[baseline correction]]. Correction for [[residual oxygen consumption]], ROX, is an example where ROX is the baseline state. In a single step, the baseline state is equivalent to the [[background state]].[[background state]].)
  • Bias  + (The '''bias''' is defined as the difference between the mean of the measurements and the reference value. In general, the measuring instrument calibration procedures should focus on establishing and correcting it.)
  • Block temperature  + (The '''block temperature''' of the [[Oroboros O2k]] is the continuously measured temperature of the copper block, housing the two glass chambers of the O2k. The block temperature is recorded by [[DatLab]] as one of the O2k system channels.)
  • Body mass excess  + (The '''body mass excess''', BME, is an ind ā€¦ The '''body mass excess''', BME, is an index of obesity and as such BME is a lifestyle metric. The BME is a measure of the extent to which your actual [[body mass]], ''M'' [kg/x], deviates from ''M''Ā° [kg/x], which is the reference body mass [kg] per individual [x] without excess body fat in the [[healthy reference population]], HRP. A balanced BME is BMEĀ° = 0.0 with a band width of -0.1 towards underweight and +0.2 towards overweight. The BME is linearly related to the [[body fat excess]].body fat excess]].)
  • Body mass index  + (The '''body mass index''', BMI, is the rat ā€¦ The '''body mass index''', BMI, is the ratio of body mass to height squared (BMI=''M''Ā·''H''<sup>-2</sup>), recommended by the WHO as a general indicator of underweight (BMI<18.5 kgĀ·m<sup>-2</sup>), overweight (BMI>25 kgĀ·m<sup>-2</sup>) and obesity (BMI>30 kgĀ·m<sup>-2</sup>). Keys et al (1972; see 2014) emphasized that 'the prime criterion must be the relative independence of the index from height'. It is exactly the dependence of the BMI on height - from children to adults, women to men, Caucasians to Asians -, which requires adjustments of BMI-cutoff points. This deficiency is resolved by the [[body mass excess]] relative to the [[healthy reference population]].althy reference population]].)
  • Body mass  + (The '''body mass''' ''M'' is the mass ([[kilogram]] ā€¦ The '''body mass''' ''M'' is the mass ([[kilogram]] [kg]) of an individual (object) [x] and is expressed in units [kg/x]. Whereas the body weight changes as a function of gravitational force (you are weightless at zero gravity; your floating weight in water is different from your weight in air), your mass is independent of gravitational force, and it is the same in air and water.orce, and it is the same in air and water.)
  • Bound energy  + (The '''bound energy''' change in a closed ā€¦ The '''bound energy''' change in a closed system is that part of the ''total'' [[energy]] change that is always bound to an exchange of [[heat]],</br></br> d''B'' = d''U'' - d''A'' [Eq. 1]</br></br> āˆ†''B'' = āˆ†''H'' - āˆ†''G'' [Eq. 2]</br></br>The ''free'' energy change (Helmoltz or Gibbs; d''A'' or d''G'') is the ''total'' energy change (total inner energy or enthalpy, d''U'' or d''H'') of a system minus the ''bound'' energy change.</br></br>Therefore, if a process occurs at [[equilibrium]], when d''G'' = 0 (at constant gas pressure), then d''H'' = d''B'', and at d<sub>e</sub>''W'' = 0 (d''H'' = d<sub>e</sub>''Q'' + d<sub>e</sub>''W''; see [[energy]]) we obtain the definition of the bound energy as the heat change taking place in an equilibrium process (eq),</br></br> d''B'' = ''T''āˆ™d''S'' = d<sub>e</sub>''Q''<sub>eq</sub> [Eq. 3]rocess (eq), d''B'' = ''T''āˆ™d''S'' = d<sub>e</sub>''Q''<sub>eq</sub> [Eq. 3])
  • Cell count and normalization in HRR  + (The '''cell count''' ''N''<sub>ce< ā€¦ The '''cell count''' ''N''<sub>ce</sub> is the number of cells, expressed in the abstract [[unit]] [x] (1 Mx = 10<sup>6</sup> x). The ''elementary entity'' cell ''U''<sub>ce</sub> [x] is the real unit, the 'single individual cell'. A cell count is the multitude or number ''N'' of cells, ''N''<sub>ce</sub> = ''N''Ā·''U''<sub>ce</sub> ([[Gnaiger MitoFit Preprints 2020.4]]). Normalization of respiratory rate by cell count yields oxygen [[flow]] ''I''<sub>O<sub>2</sub></sub> expressed in units [amolĀ·s<sup>-1</sup>Ā·x<sup>-1</sup>] (=10<sup>-18</sup> molĀ·s<sup>-1</sup>Ā·x<sup>-1</sup>).gt;</sub> expressed in units [amolĀ·s<sup>-1</sup>Ā·x<sup>-1</sup>] (=10<sup>-18</sup> molĀ·s<sup>-1</sup>Ā·x<sup>-1</sup>).)
  • Chamber volume  + (The '''chamber volume''' of the O2k is 2.0 ā€¦ The '''chamber volume''' of the O2k is 2.0 mL or 0.5 mL of aqueous medium with or without sample, excluding the volume of the stirrer and the volume of the capillary of the stopper (see: [[Cell count and normalization in HRR]]). A modular extension of the O2k, the [[O2k-sV-Module]], was specifically developed to perform high-resolution respirometry with reduced amounts of biological sample, and all components necessary for the smaller operation volume of 0.5 mL.or the smaller operation volume of 0.5 mL.)
  • Charge number  + (The '''charge number''' of an ion ''X'' or ā€¦ The '''charge number''' of an ion ''X'' or electrochemical reaction with unit stoichiometric number of ''X'' is the [[particle charge]] [CĀ·x<sup>-1</sup>] divided by the [[elementary charge]] [CĀ·x<sup>-1</sup>]. The particle charge ''Q''<sub><u>''N''</u>''X''</sub> is the charge per count of ions ''X'' or per ion ''X'' transferred in the reaction as defined in the reaction equation.ns ''X'' or per ion ''X'' transferred in the reaction as defined in the reaction equation.)
  • Chemical potential  + (The '''chemical potential''' of a substanc ā€¦ The '''chemical potential''' of a substance B, ''Āµ''<sub>B</sub> [J/mol], is the partial derivative of Gibbs energy, ''G'' [J], per amount of B, ''n''<sub>B</sub> [mol], at constant temperature, pressure, and composition other than that of B,</br> ''Āµ''<sub>B</sub> = (āˆ‚''G''/āˆ‚''n''<sub>B</sub>)<sub>''T'',''p'',''n<small>j''ā‰ B</small></sub></br>The chemical potential of a [[solute]] in solution is the sum of the standard chemical potential under defined standard conditions and a concentration ([[activity]])-dependent term,</br> ''Āµ''<sub>B</sub> = ''Āµ''<sub>B</sub>Ā° + ''RT'' ln(''a''<sub>B</sub>)</br>The standard state for the solute is refered to ideal behaviour at standard concentration, ''c''Ā° = 1 mol/L, exhibiting infinitely diluted solution behaviour [1]. ''Āµ''<sub>B</sub>Ā° equals the standard molar Gibbs energy of formation, Ī”<sub>f</sub>''G''<sub>B</sub>Ā° [kJĀ·mol<sup>-1</sup>]. The formation process of B is the transformation of the pure constituent elements to one mole of substance B, with all substances in their standard state (the most stable form of the element at 100 kPa (1 bar) at the specified temperature) [2].on of the pure constituent elements to one mole of substance B, with all substances in their standard state (the most stable form of the element at 100 kPa (1 bar) at the specified temperature) [2].)
  • Comparison of respirometric methods  + (The '''comparison of respirometric methods''' provides the basis to evaluate different instrumental platforms and different [[mitochondrial preparations]], as a guide to select the best approach and to critically evaluate published results.)
  • Critical oxygen pressure  + (The '''critical oxygen pressure''', ''p''& ā€¦ The '''critical oxygen pressure''', ''p''<sub>c</sub>, is defined as the partial oxygen pressure, ''p''<sub>O2</sub>, below which [[aerobic]] catabolism (respiration or oxygen consumption) declines significantly. If [[anaerobic]] catabolism is activated simultaneously to compensate for lower aerobic ATP generation, then the '''[[limiting oxygen pressure]]''', ''p''<sub>l</sub>, is equal to the ''p''<sub>c</sub>. In many cases, however, the ''p''<sub>l</sub> is substantially lower than the ''p''<sub>c</sub>.y cases, however, the ''p''<sub>l</sub> is substantially lower than the ''p''<sub>c</sub>.)
  • Cytochrome c control efficiency  + (The '''cytochrome ''c'' control efficiency ā€¦ The '''cytochrome ''c'' control efficiency''' expresses the control of respiration by externally added [[cytochrome c | cytochrome ''c'']], c, as a fractional change of flux from substrate state CHNO to CHNOc. These fluxes are corrected for ''Rox'' and may be measured in the OXPHOS state or ET state, but not in the LEAK state. In this [[flux control efficiency]], CHNOc is the [[reference state]] with stimulated flux; CHNO is the [[background state]] with CHNO substrates, upon which c is added:</br> ''j''<sub>cyt ''c''</sub> = (''J''<sub>CHNOc</sub>-''J''<sub>CHNO</sub>)/''J''<sub>CHNOc</sub>.>CHNOc</sub>-''J''<sub>CHNO</sub>)/''J''<sub>CHNOc</sub>.)
  • Data recording interval  + (The '''data recording interval''' is the t ā€¦ The '''data recording interval''' is the time interval at which data is sampled with an instrument. In [[DatLab]] the data recording interval is set in the [[O2k control]] window. The system default value is 2 s. A lower data recording interval is selected for kinetic experiments, and when the volume-specific oxygen flux is high (>300 pmol O<sub>2</sub>Ā·s<sup>-1</sup>Ā·ml<sup>-1</sup>).<br/>Technically, the O2k instrument (hardware) measures the sensor signal every 10ms (which is NOT the ā€ždata recording intervalā€œ). By the given data recording interval from DatLab (software) a discrete number of sensor signal points are taken to calculate an average value in the O2k (e.g. a data recording interval of 2 s can take 200 sensor signal points; a data recording interval of 0.5 s can take 50 sensor signal points). This average value is sent to DatLab and is recorded as a raw data point. However, there is a defined threshold: the O2k does not apply more than 200 sensor signal points to calculate the average for the raw data point. For example a data recording interval of 3 s could take 300 sensor signal points but only the 200 most recent sensor signal points are used for averaging.signal points but only the 200 most recent sensor signal points are used for averaging.)
  • Dicarboxylate carrier  + (The '''dicarboxylate carrier''' is a transporter which catalyses the electroneutral exchange of [[malate]]<sup>2-</sup> (or [[succinate]]<sup>2-</sup>) for inorganic [[phosphate]], HPO<sub>4</sub><sup>2-</sup>.)
  • Energy charge  + (The '''energy charge''' of the adenylate s ā€¦ The '''energy charge''' of the adenylate system or adenylate energy charge (AEC) has been defined by Atkinson and Walton (1967) as (ATP + Ā½ ADP)/(AMP + ADP + ATP). Wheather the AEC is a fundamental metabolic control parameter remains a controversial topic.l parameter remains a controversial topic.)
  • Ergodynamic efficiency  + (The '''ergodynamic efficiency''', ''Īµ'' (c ā€¦ The '''ergodynamic efficiency''', ''Īµ'' (compare [[thermodynamic efficiency]]), is a power ratio between the output power and the (negative) input power of an energetically coupled process. Since [[power]] [W] is the product of a [[flow]] and the conjugated thermodynamic [[force]], the ergodynamic efficiency is the product of an output/input flow ratio and the corresponding force ratio. The efficiency is 0.0 in a fully uncoupled system (zero output flow) or at level flow (zero output force). The maximum efficiency of 1.0 can be reached only in a fully (mechanistically) coupled system at the limit of zero flow at ergodynamic equilibrium. The ergodynamic efficiency of coupling between ATP production (DT phosphorylation) and oxygen consumption is the flux ratio of DT phosphorylation flux and oxygen flux (PĀ»/O<sub>2</sub> ratio) multiplied by the corresponding force ratio. Compare with the [[OXPHOS-coupling efficiency]].OXPHOS-coupling efficiency]].)
  • Extinction coefficient  + (The '''extinction coefficient''' (''Īµ'') of a substance is the [[absorbance]] of a 1 Āµmolar concentration over a 1 cm pathlength and is wavelength-dependent.)
  • Gain  + (The '''gain''' is an amplification factor applied to an input signal to increase the output signal.)
  • Glutamate-aspartate carrier  + (The '''glutamate-aspartate carrier''' cata ā€¦ The '''glutamate-aspartate carrier''' catalyzes the electrogenic antiport of glutamate<sup>-</sup> +H<sup>+</sup> for aspartate<sup>-</sup>. It is an important component of the malate-aspartate shuttle in many mitochondria. Due to the symport of glutamate<sup>-</sup> + +H<sup>+</sup>, the glutamate-aspartate antiport is not electroneutal and may be impaired by [[uncoupling]]. [[Aminooxyacetate]] is an [[inhibitor]] of the glutamate-aspartate carrier.[[inhibitor]] of the glutamate-aspartate carrier.)
  • Height of humans  + (The '''height of humans''', ''h'', is give ā€¦ The '''height of humans''', ''h'', is given in SI units in meters [m]. Humans are countable objects, and the symbol and unit of the number of objects is ''N'' [x]. The average height of ''N'' objects is, ''H'' = ''h''/''N'' [m/x], where ''h'' is the heights of all ''N'' objects measured on top of each other. Therefore, the height per human has the unit [mĀ·x<sup>-1</sup>] (compare [[body mass]] [kgĀ·x<sup>-1</sup>]). Without further identifyer, ''H'' is considered as the standing height of a human, measured without shoes, hair ornaments and heavy outer garments., measured without shoes, hair ornaments and heavy outer garments.)
  • Hexokinase  + (The '''hexokinase''' catalyzes the phosphorylation of D-glucose at position 6 by ATP to yield D-glucose 6-phosphate as well as the phosphorylation of many other hexoses like D-fructose, D-mannose, D-glucosamine.)
  • Limiting oxygen pressure  + (The '''limiting oxygen pressure''', ''p''& ā€¦ The '''limiting oxygen pressure''', ''p''<sub>l</sub>, is defined as the partial oxygen pressure, ''p''<sub>O2</sub>, below which [[anaerobic]] catabolism is activated to contribute to total ATP generation. The limiting oxygen pressure, ''p''<sub>l</sub>, may be substantially lower than the '''[[critical oxygen pressure]]''', ''p''<sub>c</sub>, below which [[aerobic]] catabolism (respiration or oxygen consumption) declines significantly.[[aerobic]] catabolism (respiration or oxygen consumption) declines significantly.)
  • Membrane-bound ET pathway  + (The '''membrane-bound [[electron transfer pathway]] ā€¦ The '''membrane-bound [[electron transfer pathway]] (mET pathway)''' consists in mitochondria mainly of [[respiratory complexes]] CI, CII, electron transferring flavoprotein complex (CETF), glycerophosphate dehydrogenase complex (CGpDH), and choline dehydrogenase, with [[convergent electron flow]] at the [[Q-junction]] (Coenzyme Q), and the two downstream respiratory complexes connected by cytochrome ''c'', CIII and CIV, with oxygen as the final electron acceptor. The mET-pathway is the terminal (downstream) module of the mitochondrial [[ET pathway]] and can be isolated from the ET-pathway in [[submitochondrial particles]] (SmtP).[[submitochondrial particles]] (SmtP).)
  • Meter  + (The '''meter''', symbol m, is the SI unit ā€¦ The '''meter''', symbol m, is the SI unit of the SI base quantity [[length]] ''l''. It is defined by taking the fixed numerical value of the speed of light ''c'' in vacuum to be 299 792 458 when expressed in the unit mĀ·s<sup>āˆ’1</sup>, where the second is defined in terms of the caesium frequency Ī”''Ī½''<sub>Cs</sub>.in terms of the caesium frequency Ī”''Ī½''<sub>Cs</sub>.)
  • Mitochondrial ATP-sensitive K+ channel  + (The '''mitochondrial ATP-sensitive K<sup>+</sup> channel''' (mtK<sub>ATP</sub> or mitoK<sub>ATP</sub>).)
  • Mitochondrial free radical theory of aging  + (The '''mitochondrial free radical theory o ā€¦ The '''mitochondrial free radical theory of aging''' goes back to Harman (1956) and ranks among the most popular theories of aging. It is based on postulates which are not unequivocally supported by observation (Bratic, Larsson 2013):</br>(i) Mitochondrial ROS production increases with age caused by progressive mitochondrial dysfunction;</br>(ii) antioxidat capacity declines with age;</br>(iii) mutations of somatic mtDNA accumulate during aging;</br>(iv) a vicious cycle occurs of increased ROS production caused by mtDNA mutations and degenerated mt-function, and due to ROS-induced ROS production.on, and due to ROS-induced ROS production.)
  • Mitochondrial inner membrane  + (The '''mitochondrial inner membrane''' mtI ā€¦ The '''mitochondrial inner membrane''' mtIM is the structure harboring the membrane-bound [[electron transfer system]] ETS including the respiratory complexes working as [[hydrogen ion pump]]s, the mt-[[phosphorylation system]] including the hydrogen ion pump [[ATP synthase]], several substrate transporters involved in the [[electron transfer pathway]], and a variety of other ion pumps that carry [[proton]] charge (Ca<sup>2+</sup>, Mg<sup>2+</sup>). The [[protonmotive force]] is the electrochemical potential difference across the mtIM generated by the [[hydrogen ion pumps]] of the .[[hydrogen ion pumps]] of the .)
  • Mitochondrial matrix  + (The '''mitochondrial matrix''' (mt-matrix) ā€¦ The '''mitochondrial matrix''' (mt-matrix) is enclosed by the mt-inner membrane mtIM. The terms mitochondrial matrix space or mitochondrial lumen are used synonymously. The mt-matrix contains the enzymes of the [[tricarboxylic acid cycle]], [[fatty acid oxidation]] and a variety of enzymes that have cytosolic counterparts (e.g. [[glutamate dehydrogenase]], [[malic enzyme]]). Metabolite concentrations, such as the concentrations of fuel substrates, adenylates (ATP, ADP, AMP) and redox systems (NADH), can be very different in the mt-matrix, the mt-intermembrane space, and the cytosol. The finestructure of the gel-like mt-matrix is subject of current research. mt-matrix is subject of current research.)
  • Mitochondrial membrane potential  + (The '''mitochondrial membrane potential''' ā€¦ The '''mitochondrial membrane potential''' difference, mtMP or Ī”''ĪØ''<sub>p<sup>+</sup></sub> = Ī”<sub>el</sub>''F''<sub><u>''e''</u>p<sup>+</sup></sub>, is the electric part of the protonmotive [[force]], Ī”p = Ī”<sub>m</sub>''F''<sub><u>''e''</u>H<sup>+</sup></sub>.</br></br>:::: Ī”<sub>el</sub>''F''<sub><u>''e''</u>p<sup>+</sup></sub> = Ī”<sub>m</sub>''F''<sub><u>''e''</u>H<sup>+</sup></sub> - Ī”<sub>d</sub>''F''<sub><u>''e''</u>H<sup>+</sup></sub></br>:::: Ī”''ĪØ''<sub>p<sup>+</sup></sub> = Ī”p - Ī”''Āµ''<sub>H+</sub>Ā·(''z''<sub>H<sup>+</sup></sub>Ā·''F'')<sup>-1</sup></br></br>Ī”''ĪØ''<sub>p<sup>+</sup></sub> is the potential difference across the mitochondrial inner membrane (mtIM), expressed in the electric unit of volt [V]. Electric force of the mitochondrial membrane potential is the electric energy change per ā€˜motiveā€™ charge or per charge moved across the transmembrane potential difference, with the number of ā€˜motiveā€™ charges expressed in the unit coulomb [C].t;p<sup>+</sup></sub> is the potential difference across the mitochondrial inner membrane (mtIM), expressed in the electric unit of volt [V]. Electric force of the mitochondrial membrane potential is the electric energy change per ā€˜motiveā€™ charge or per charge moved across the transmembrane potential difference, with the number of ā€˜motiveā€™ charges expressed in the unit coulomb [C].)
  • Mitochondrial outer membrane  + (The '''mitochondrial outer membrane''' is ā€¦ The '''mitochondrial outer membrane''' is the incapsulating membrane which is osmotically not active and contains the cytochrome ''b''<sub>5</sub> enzyme similar to that found in the endoplasmatic reticulum, the translocases of the outer membrane, monoaminooxidase, the palmitoyl-CoA synthetase and carnytil-CoA transferase 1.lmitoyl-CoA synthetase and carnytil-CoA transferase 1.)
  • Motive unit  + (The '''motive unit''' [MU] is the variable ā€¦ The '''motive unit''' [MU] is the variable SI unit in which the [[motive entity]] (transformant) of a transformation is expressed, which depends on the energy transformation under study and on the chosen [[format]]. Fundamental MU for electrochemical transformations are:</br></br>* MU = x, for the particle or molecular format, <u>''N''</u></br>* MU = mol, for the chemical or molar format, <u>''n''</u></br>* MU = C, for the electrical format, <u>''e''</u>; </br></br>For the [[protonmotive force]] the motive entity is the proton with charge number ''z''=1. The protonmotive force is expressed in the electrical or molar format with MU J/C=V or J/mol=Jol, respectively. The conjugated flows, ''I'', are expressed in corresponding electrical or molar formats, C/s = A or mol/s, respectively.</br></br>The [[charge number]], ''z'', has to be considered in the conversion of motive units (compare Table below), if a change not only of units but a transition between the entity [[elementary charge]] and an entity with charge number different from unity is involved (''e.g.'', O<sub>2</sub> with ''z''=4 in a redox reaction). The ratio of elementary charges per reacting O<sub>2</sub> molecule (''z''<sub>O<small>2</small></sub>=4) is multiplied by the elementary charge (''e'', coulombs per proton), which yields coulombs per O<sub>2</sub> [Cāˆ™x<sup>-1</sup>]. This in turn is multiplied with the [[Avogadro constant]], ''N''<sub>A</sub> (O<sub>2</sub> molecules per mole O<sub>2</sub> [xāˆ™mol<sup>-1</sup>]), thus obtaining for ''zeN''<sub>A</sub> the ratio of elementary charges [C] per amount of O<sub>2</sub> [mol<sup>-1</sup>]. The conversion factor for O<sub>2</sub> is 385.94132 Cāˆ™mmol<sup>-1</sup>., thus obtaining for ''zeN''<sub>A</sub> the ratio of elementary charges [C] per amount of O<sub>2</sub> [mol<sup>-1</sup>]. The conversion factor for O<sub>2</sub> is 385.94132 Cāˆ™mmol<sup>-1</sup>.)
  • Ordinate  + (The '''ordinate''' is the vertical axis ''y'' of a rectangular two-dimensional graph with the [[abscissa]] ''x'' as the horizontal axis. Values ''Y'' are placed vertically from the origin. See [[Ordinary Y/X regression |Ordinary ''Y''/''X'' regression]].)
  • Oxycaloric equivalent  + (The '''oxycaloric equivalent''' is the the ā€¦ The '''oxycaloric equivalent''' is the theoretically derived enthalpy change of the oxidative catabolic reactions per amount of oxygen respired, Delta<sub>k</sub>''H''<sub>O2</sub>, ranging from -430 to -480 kJ/mol O<sub>2</sub>. The oxycaloric equivalent is used in [[indirect calorimetry]] to calculate the theoretically expected metabolic heat flux from the respirometrically measured metabolic oxygen flux. [[Calorespirometric ratio|Calorimetric/respirometric ratios]] (CR ratios; heat/oxygen flux ratios) are experimentally determined by [[calorespirometry]]. A CR ratio more exothermic than the oxycaloric equivalent of -480 kJ/mol indicates the simultaneous involvement of aerobic and anaerobic mechanisms of energy metabolism.ltaneous involvement of aerobic and anaerobic mechanisms of energy metabolism.)
  • Oxygen signal  + (The '''oxygen signal''' of the [[Oroboros O2k]] ā€¦ The '''oxygen signal''' of the [[Oroboros O2k]] is transmitted from the electrochemical polarographic oxygen sensor ([[OroboPOS]]) for each of the two O2k-chambers to [[DatLab]]. The primary signal is a current [ĀµA] which is converted into a voltage [V] (raw signal), and calibrated in SI units for amount of substance concentration [ĀµmolĀ·L<sup>-1</sup> or ĀµM]. For technical reasons, the raw signal is given in [V] (DatLab 7 and previous) or [ĀµA] (DatLab 8). The value of the raw signal is the same, independent of the displayed unit ([V] or [ĀµA]). In the following sections, only [ĀµA] is used for information on the raw signal, but the same values in [V] apply for the raw signal when using DL7 or previous versions.or the raw signal when using DL7 or previous versions.)
  • Oxygen solubility factor  + (The '''oxygen solubility factor''' of the ā€¦ The '''oxygen solubility factor''' of the incubation medium, ''F''<sub>M</sub>, expresses the effect of the salt concentration on [[oxygen solubility]] relative to pure water. In mitochondrial respiration medium [[MiR05]], [[MiR05-Kit]] and [[MiR06]], ''F''<sub>M</sub> is 0.92 (determined at 30 and 37 Ā°C) and in culture media is 0.89 (at 37 Ā°C). ''F''<sub>M</sub> varies depending on the temperature and composition of the medium. To determine the FM based on the oxygen concentration, specific methods and equipment are needed (see references Rasmussen HN, Rasmussen UF 2003 in [https://wiki.oroboros.at/index.php/MiPNet06.03_POS-calibration-SOP MiPNet06.03]). For other media, ''F''<sub>M</sub> may be estimated using Table 4 in [https://wiki.oroboros.at/index.php/MiPNet06.03_POS-calibration-SOP MiPNet06.03]. For this purpose KCl based media can be described as "seawater" of varying salinity. The original data on sucrose and KCl-media (Reynafarje et al 1985), however, have been critizesed as artefacts and the ''F''<sub>M</sub> of 0.92 is suggested in the temperature range of 10 Ā°C to 40 Ā°C as for MiR05.<sub>M</sub> of 0.92 is suggested in the temperature range of 10 Ā°C to 40 Ā°C as for MiR05.)
  • Oxygen solubility  + (The '''oxygen solubility''', ''S''<sub& ā€¦ The '''oxygen solubility''', ''S''<sub>O<sub>2</sub></sub> [ĀµM/kPa] = [(ĀµmolĀ·L<sup>-1</sup>)/kPa], expresses the oxygen concentration in solution in equilibrium with the [[oxygen pressure]] in a gas phase, as a function of temperature and composition of the solution. The inverse of oxygen solubility is related to the [[activity]] of dissolved oxygen. The oxygen solubility in solution, ''S''<sub>O<sub>2</sub></sub>(aq), depends on temperature and the concentrations of solutes in solution, whereas the dissolved oxygen concentration at equilibrium with air, ''c''<sub>O<sub>2</sub></sub><sup>*</sup>(aq), depends on ''S''<sub>O<sub>2</sub></sub>(aq), barometric pressure and temperature. ''S''<sub>O<sub>2</sub></sub>(aq) in pure water is 10.56 ĀµM/kPa at 37 Ā°C and 12.56 ĀµM/kPa at 25 Ā°C. At standard [[barometric pressure]] (100 kPa), ''c''<sub>O<sub>2</sub></sub><sup>*</sup>(aq) is 207.3 ĀµM at 37 Ā°C (19.6 kPa partial oxygen pressure) or 254.7 ĀµM at 25 Ā°C (20.3 kPa partial oxygen pressure). In [[MiR05]] and serum, the corresponding saturation concentrations are lower due to the [[oxygen solubility factor]]: 191 and 184 ĀµM at 37 Ā°C or 234 and 227 ĀµM at 25 Ā°C.lubility factor]]: 191 and 184 ĀµM at 37 Ā°C or 234 and 227 ĀµM at 25 Ā°C.)
  • PH  + (The '''pH value''' or pH is the negative o ā€¦ The '''pH value''' or pH is the negative of the base 10 logarithm of the [[activity]] of [[proton]]s (hydrogen ions, H<sup>+</sup>). A [[pH electrode]] reports the pH and is sensitive to the activity of H<sup>+</sup>. In dilute solutions, the hydrogen ion activity is approximately equal to the hydrogen ion [[concentration]]. The symbol pH stems from the term ''potentia hydrogenii''.[[concentration]]. The symbol pH stems from the term ''potentia hydrogenii''.)
  • Partial oxygen pressure  + (The '''partial oxygen pressure''' ''p''< ā€¦ The '''partial oxygen pressure''' ''p''<sub>O<sub>2</sub></sub> [kPa] is the contribution of the O<sub>2</sub> gas pressure to the total gas pressure. According to the gas law, the partial oxygen pressure is ''p''<sub>O<sub>2</sub>(g)</sub> = ''n''<sub>O<sub>2</sub>(g)</sub>Ā·''V''Ā·''RT'', where the [[concentration]] is ''c''<sub>O<sub>2</sub>(g)</sub> = ''n''<sub>O<sub>2</sub>(g)</sub>Ā·''V''<sup>-1</sup> [molĀ·m<sup>-3</sup>], ''R'' is the [[gas constant]], and ''T'' is the absolute temperature, and ''RT'' is expressed in units of chemical force [JĀ·mol<sup>-1</sup>]. In aqueous solutions at equilibrium with a gas phase, the partial O<sub>2</sub> pressures are equal in the aqueous phase (aq) and gas phase (g), ''p''<sub>O<sub>2</sub>(aq)</sub> = ''p''<sub>O<sub>2</sub>(g)</sub> at total [[pressure]]s where the partial pressure equals the fugacity. The O<sub>2</sub> concentration in the aqueous phase, however, is much lower than in the gas phase, due to the low [[oxygen solubility]] in water. The activity of dissolved O<sub>2</sub> is expressed by the ''p''<sub>O<sub>2</sub></sub>, where the [[solubility]] can be seen as an activity coefficient.ubility]] can be seen as an activity coefficient.)
  • Particle charge  + (The '''particle charge''' ''Q<sub>N& ā€¦ The '''particle charge''' ''Q<sub>N<sub>X</sub></sub>'' (''Q<sub><u>N</u>X</sub>'') or charge per elementary entity is the [[charge]] ''Q''<sub>el''X''</sub> [C] carried by ions of type ''X'' divided by the count ''N<sub>X</sub>'' [x]. The particle charge per proton is the [[elementary charge]] or proton charge ''e''.[[elementary charge]] or proton charge ''e''.)
  • Pascal  + (The '''pascal''' [Pa] is the SI unit for [[pressure]] ā€¦ The '''pascal''' [Pa] is the SI unit for [[pressure]]. [Pa] = [JĀ·m<sup>-3</sup>] = [NĀ·m<sup>-2</sup>] = [m<sup>-1</sup>Ā·kgĀ·s<sup>-2</sup>].</br></br>The standard pressure is 100 kPa = 1 bar (10<sup>5</sup> Pa; 1 kPa = 1000 Pa). Prior to 1982 the standard pressure has been defined as 101.325 kPa or 1 standard atmosphere (1 atm = 760 mmHg).982 the standard pressure has been defined as 101.325 kPa or 1 standard atmosphere (1 atm = 760 mmHg).)
  • Phosphate carrier  + (The '''phosphate carrier''' (PiC) is a pro ā€¦ The '''phosphate carrier''' (PiC) is a proton/phosphate symporter which transports negatively charged [[inorganic phosphate]] across the inner mt-membrane. The transport can be described either as symport of H<sup>+</sup> with P<sub>i</sub>, or antiport of hydroxide anion against P<sub>i</sub>. The phosphate carrier is a component of the [[phosphorylation system]].[[phosphorylation system]].)
  • Primary sample  + (The '''primary sample''' or '''specimen''' ā€¦ The '''primary sample''' or '''specimen''' is a set of one or more parts initially taken from an object. In some countries, the term ā€œspecimenā€ is used instead of primary sample (or a subsample of it), which is the sample prepared for sending to, or as received by, the laboratory and which is intended for examination.ory and which is intended for examination.)
  • Protonmotive force  + (The '''protonmotive force''' āˆ†<sub>m ā€¦ The '''protonmotive force''' āˆ†<sub>m</sub>''F''<sub>H<sup>+</sup></sub> is known as Ī”p in Peter Mitchellā€™s chemiosmotic theory [1], which establishes the link between electric and chemical components of energy transformation and coupling in [[oxidative phosphorylation]]. The unifying concept of the ''pmF'' ranks among the most fundamental theories in biology. As such, it provides the framework for developing a consistent theory and nomenclature for mitochondrial physiology and bioenergetics. The protonmotive force is not a vector force as defined in physics. This conflict is resolved by the generalized formulation of isomorphic, compartmental [[force]]s, āˆ†<sub>tr</sub>''F'', in energy (exergy) transformations [2]. Protonmotive means that there is a potential for the movement of protons, and force is a measure of the potential for motion.</br></br>The ''pmF'' is generated in [[oxidative phosphorylation]] by oxidation of reduced fuel substrates and reduction of O<sub>2</sub> to H<sub>2</sub>O, driving the coupled proton translocation from the mt-matrix space across the mitochondrial inner membrane (mtIM) through the proton pumps of the [[electron transfer pathway]] (ETS), which are known as respiratory Complexes CI, CIII and CIV. āˆ†<sub>m</sub>''F''<sub>H<sup>+</sup></sub> consists of two partial isomorphic forces: (''1'') The chemical part, āˆ†<sub>d</sub>''F''<sub>H<sup>+</sup></sub>, relates to the diffusion (d) of uncharged particles and contains the chemical potential difference<sup>Ā§</sup> in H<sup>+</sup>, āˆ†''Āµ''<sub>H<sup>+</sup></sub>, which is proportional to the pH difference, āˆ†pH. (''2'') The electric part, āˆ†<sub>el</sub>''F''<sub>p<sup>+</sup></sub> (corresponding numerically to āˆ†''ĪØ'')<sup>Ā§</sup>, is the electric potential difference<sup>Ā§</sup>, which is not specific for H<sup>+</sup> and can, therefore, be measured by the distribution of any permeable cation equilibrating between the negative (matrix) and positive (external) compartment. Motion is relative and not absolute (Principle of Galilean Relativity); likewise there is no absolute potential, but isomorphic forces are stoichiometric potential differences<sup>Ā§</sup>.</br></br>The total motive force (motive = electric + chemical) is distinguished from the partial components by subscript ā€˜mā€™, āˆ†<sub>m</sub>''F''<sub>H<sup>+</sup></sub>. Reading this symbol by starting with the proton, it can be seen as ''pmF'', or the subscript m (motive) can be remembered by the name of Mitchell,</br></br> āˆ†<sub>m</sub>''F''<sub>H<sup>+</sup></sub> = āˆ†<sub>d</sub>''F''<sub>H<sup>+</sup></sub> + āˆ†<sub>el</sub>''F''<sub>p<sup>+</sup></sub></br></br>With classical symbols, this equation contains the [[Faraday constant]], ''F'', multiplied implicitly by the charge number of the proton (''z''<sub>H<sup>+</sup></sub> = 1), and has the form [1]</br></br> āˆ†p = āˆ†''Āµ''<sub>H<sup>+</sup></sub>āˆ™''F''<sup>-1</sup> + āˆ†''ĪØ''</br></br>A partial electric force of 0.2 V in the electrical [[format]], āˆ†<sub>el</sub>''F''<sub><u>''e''</u>H<sup>+</sup>''a''</sub>, is 19 kJāˆ™mol<sup>-1</sup> H<sup>+</sup><sub>''a''</sub> in the molar format, āˆ†<sub>el</sub>''F''<sub><u>''n''</u>p<sup>+</sup>''a''</sub>. For 1 unit of āˆ†pH, the partial chemical force changes by -5.9 kJāˆ™mol<sup>-1</sup> in the molar format, āˆ†<sub>d</sub>''F''<sub><u>''n''</u>H<sup>+</sup>''a''</sub>, and by 0.06 V in the electrical format, āˆ†<sub>d</sub>''F''<sub><u>''e''</u>H<sup>+</sup>''a''</sub>. Considering a driving force of -470 kJāˆ™mol<sup>-1</sup> O<sub>2</sub> for oxidation, the thermodynamic limit of the H<sup>+</sup><sub>''a''</sub>/O<sub>2</sub> ratio is reached at a value of 470/19 = 24, compared to the mechanistic stoichiometry of 20 for the [[N-pathway]] with three coupling sites.)
  • Protonmotive pressure  + (The '''protonmotive pressure''', āˆ†<sub& ā€¦ The '''protonmotive pressure''', āˆ†<sub>m</sub>''Ī ''<sub>H<sup>+</sup></sub> or ''pmP'' [kPa], is an extension of Peter Mitchellā€™s concept of the [[protonmotive force]] ''pmF'', based on Fickā€™s law of diffusion and Einsteinā€™s diffusion equation, accounting for osmotic pressure (corresponding to the diffusion term in the ''pmF'') and electric pressure (the electric term or membrane potential in the ''pmF''). The linearity of the generalized flow-pressure relationship explains the non-ohmic flow-force dependence in the proton leak rate as a function of membrane potential.</br></br>The total motive pressure (motive = electric + chemical) is distinguished from the partial components by subscript ā€˜mā€™, āˆ†<sub>m</sub>''Ī ''<sub>H<sup>+</sup></sub>,</br></br> āˆ†<sub>m</sub>''Ī ''<sub>H<sup>+</sup></sub> = āˆ†<sub>d</sub>''Ī ''<sub>H<sup>+</sup></sub> + āˆ†<sub>el</sub>''Ī ''<sub>p<sup>+</sup></sub>ub>''Ī ''<sub>H<sup>+</sup></sub> = āˆ†<sub>d</sub>''Ī ''<sub>H<sup>+</sup></sub> + āˆ†<sub>el</sub>''Ī ''<sub>p<sup>+</sup></sub>)
  • Raw signal of the oxygen sensor  + (The '''raw signal''' of the polarographic ā€¦ The '''raw signal''' of the polarographic oxygen sensor is the [[current]] ''I''<sub>el</sub> [ĀµA], 1 ĀµA = 10<sup>-6</sup> CĀ·s<sup>-1</sup>, (DatLab 8) or the electric potential difference ([[voltage]]) [V], 1 V = 1 JĀ·C<sup>-1</sup>, obtained after a current-to-voltage conversion in the O2k (DatLab 7 and previous versions).btained after a current-to-voltage conversion in the O2k (DatLab 7 and previous versions).)
  • Reference state  + (The '''reference state''' Z (reference rat ā€¦ The '''reference state''' Z (reference rate ''Z<sub>X</sub>'') is the respiratory state with high flux in relation to the [[background state]] Y with low background flux ''Y<sub>X</sub>''. The transition between the background state and the reference state is a step brought about by a [[metabolic control variable]] ''X''. If ''X'' stimulates flux (ADP, fuel substrate), it is present in the reference state but absent in the background state. If ''X'' is an inhibitor of flux, it is absent in the reference state but present in the background state. The reference state is specific for a single step to define the [[flux control efficiency]]. In contrast, in a sequence of multiple steps, the common reference state is frequently taken as the state with the highest flux in the entire sequence, as used in the definition of the [[flux control ratio]].[[flux control ratio]].)
  • Respiratory acceptor control ratio  + (The '''respiratory acceptor control ratio' ā€¦ The '''respiratory acceptor control ratio''' (''RCR'') is defined as [[State 3]]/[[State 4]] [1]. If State 3 is measured at saturating [ADP], ''RCR'' is the inverse of the OXPHOS control ratio, ''[[L/P]]'' (when State 3 is equivalent to the OXPHOS state, ''P''). ''RCR'' is directly but non-linearly related to the [[P-L control efficiency |''P-L'' control efficiency]], ''j''<sub>''P-L''</sub> = 1-''L/P'', with boundaries from 0.0 to 1.0. In contrast, ''RCR'' ranges from 1.0 to infinity, which needs to be considered when performing statistical analyses. In living cells, the term ''RCR'' has been used for the ratio [[State 3u]]/[[State 4o]], i.e. for the inverse ''[[L/E]]'' ratio [2,3]. Then for conceptual and statistical reasons, ''RCR'' should be replaced by the [[E-L coupling efficiency |''E-L'' coupling efficiency]], 1-''L/E'' [4].[[E-L coupling efficiency |''E-L'' coupling efficiency]], 1-''L/E'' [4].)
  • Signal-to-noise ratio  + (The '''signal to noise ratio''' is the ratio of the power of the signal to that of the noise. For example, in [[fluorimetry]] it would be the ratio of the square of the [[fluorescence]] intensity to the square of the intensity of the background noise.)
  • Slit width  + (The '''slit width''' determines the amount of light entering the [[spectrofluorometer]] or [[spectrophotometer]]. A larger slit reduces the [[signal-to-noise ratio]] but reduces the wavelength [[resolution]].)
  • Solubility  + (The '''solubility''' of a gas, ''S''<sub>G</sub>, is defined as concentration divided by partial pressure, ''S''<sub>G</sub> = ''c''<sub>G</sub>Ā·''p''<sub>G</sub><sup>-1</sup>.)
  • SUIT reference protocol  + (The '''substrate-uncoupler-inhibitor titra ā€¦ The '''substrate-uncoupler-inhibitor titration ([[SUIT]]) reference protocol''', SUIT RP, provides a common baseline for comparison of mitochondrial respiratory control in a large variety of species, tissues and cell types, mt-preparations and laboratories, for establishing a database on comparative mitochondrial phyisology. The SUIT RP consists of two [[harmonized SUIT protocols]] ([[SUIT-001]] - RP1 and [[SUIT-002]] - RP2). These are coordinated such that they can be statistically evaluated as replicate measurements of [[cross-linked respiratory states]], while additional information is obtained when the two protocols are conducted in parallel. Therefore, these harmonized SUIT protocols are complementary with their focus on specific respiratory coupling and pathway control aspects, extending previous strategies for respirometrc OXPHOS analysis.</br></br>: [[SUIT-001]] (RP1): 1PM;2D;2c;3U;4G;5S;6Oct;7Rot;8Gp;9Ama;10Tm;11Azd</br></br>: [[SUIT-002]] (RP2): 1D;2OctM;2c;3P;4G;5S;6Gp;7U;8Rot;9Ama;10Tm;11AzdtM;2c;3P;4G;5S;6Gp;7U;8Rot;9Ama;10Tm;11Azd)
  • Mitochondrial transcription factor A  + (The '''transcription factor A''' is a gene ā€¦ The '''transcription factor A''' is a gene that encodes a mitochondrial transcription factor that is a key activator of mitochondrial transcription as well as a participant in mitochondrial genome replication. TFAM is downstream of [[Peroxisome proliferator-activated receptor gamma coactivator 1-alpha|PGC-1alpha]].[[Peroxisome proliferator-activated receptor gamma coactivator 1-alpha|PGC-1alpha]].)
  • Tricarboxylate carrier  + (The '''tricarboxylate carrier''' in the inner mt-membrane exchanges malate<sup>2-</sup> for citrate<sup>3-</sup> or isocitrate<sup>3-</sup>, with co-transport of H<sup>+</sup>.)
  • Tricarboxylic acid cycle  + (The '''tricarboxylic acid (TCA) cycle''' i ā€¦ The '''tricarboxylic acid (TCA) cycle''' is a system of enzymes in the mitochondrial matrix arranged in a cyclic metabolic structure, including dehydrogenases that converge in the NADH pool and [[succinate dehydrogenase]] (on the inner side of the inner mt-membrane) for entry into the membrane-bound ET pathway [[Membrane-bound ET pathway|mET pathway]]. [[Citrate synthase]] is a marker enzyme of the TCA cycle, at the gateway into the cycle from [[pyruvate]] via [[acetyl-CoA]]. It is thus the major module of the [[Electron transfer pathway]], upstream of the inner [[Membrane-bound ET pathway|Membrane-bound ET pathway]] (mET-pathway) and downstream of the [[Mitochondrial outer membrane|outer mt-membrane]]. Sections of TCA cycle are required for [[fatty acid oxidation]] (FAO, Ī²-oxidation). [[Anaplerosis|Anaplerotic reactions]] fuel the TCA cycle with other intermediary metabolites. In the cell, the TCA cycle serves also biosynthetic functions by metabolite export from the matrix into the cytosol.e export from the matrix into the cytosol.)
  • Uncoupling-control ratio  + (The '''uncoupling-control ratio''' UCR is ā€¦ The '''uncoupling-control ratio''' UCR is the ratio of ET-pathway/ROUTINE-respiration (''E/R'') in living cells, evaluated by careful [[uncoupler]] titrations ([[Steinlechner-Maran 1996 Am J Physiol Cell Physiol|Steinlechner et al 1996]]). Compare [[ROUTINE-control ratio]] (''R/E'') [[Gnaiger 2008 POS|(Gnaiger 2008)]].[[Gnaiger 2008 POS|(Gnaiger 2008)]].)
  • Journal volume  + (The '''volume''' of a journal or periodica ā€¦ The '''volume''' of a journal or periodical is a number, which in many cases indicates the sequential number of years the journal has been published. Alternatively, the volume number may indicate the current year, independent of the year in which the journal published its first volume. A volume may be subdivided into [[Journal issue |issues]].[[Journal issue |issues]].)
  • Wet mass  + (The '''wet mass''' of a tissue or biological sample, obtained after blotting the sample to remove an arbitrary amount of water adhering externally to the sample.)
  • Permeability transition pore  + (The (mitochondrial, mt) permeability trans ā€¦ The (mitochondrial, mt) permeability transition pore (PTP) is an unspecific pore presumed to involve components of both the inner and outer mt membrane which upon opening induces a massive increase of the inner mt membrane permeability for solutes up to 1.5 kDa. It is crucially involved in cell death induction in response to, among other stimuli, radical stress and/or calcium overload and may cause necrosis or apoptosis. It plays an important role in neurodegenerative diseases, cardiac ischemia-reperfusion injury and possibly various other diseases. Previously considered essential molecular constituents such as the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin D (CypD) have all been shown to be important regulators of mtPTP opening, but the molecular entities actually forming the pore are still unknown at present. The opening of the pore can be prevented using [[cyclosporin A]], a compound that binds cyclophilin D avoiding the formation of the pore. In respirometry, mtPTP opening may be observed as a sudden decrease of respiration of isolated mitochondria ([[Hansson 2010 J Biol Chem]]).[[Hansson 2010 J Biol Chem]]).)
  • Search for defective O2k components  + (The 2-chamber design of the O2k helps to '''search for defective O2k components''', by switching components linked to O2k chambers A and B between sides A and B.)
  • PĀ»-system  + (The ADP-ATP phosphorylation system or PĀ»-system. ''See'' [[Phosphorylation system]].)
  • CDGSH iron-sulfur domain proteins  + (The CDGSH iron-sulfur domain (CISDs) famil ā€¦ The CDGSH iron-sulfur domain (CISDs) family of proteins uniquely ligate labile 2Fe-2S clusters with a 3Cys-1His motif. CISD1 and CISD3 have been demonstrated to localize to the outer mitochondrial membrane and mitochondrial matrix respectively, however their relationship to mitochondrial physiology remains ill-defined [1]. The best characterized member of the CISD family, CISD1, has been demonstrated to be involved in respiratory capacity, iron homeostasis, and ROS regulationcity, iron homeostasis, and ROS regulation)
  • French Group of Bioenergetics  + (The French Group of Bioenergetics...)
  • O2k control panel - DatLab  + (The O2k control panel allows for quick acc ā€¦ The O2k control panel allows for quick access of O2k instrument settings. It covers the right side of the graphical user interface of DatLab 8. If a DatLab protocol is active, the protocol panel ist shown instead, a tab at the right side allows to switch between O2k control panel and protocol panel.ween O2k control panel and protocol panel.)
  • Closed chamber  + (The O2k-chamber can be used as a [[closed system]] or [[open system]]. Gas bubbles must be avoided.)
  • OroboPOS-Connector Service  + (The OroboPOS-Connector Service entails routine maintenance and any necessary repairs of the OroboPOS-Connector in the Oroboros electronics workshop (WGT).)
  • PC requirements  + (The PC requirements for controlling an O2k and data recording with [[DatLab]] are found [[DatLab installation |here]].)
  • Display Power-O2k  + (The Power-O2k number, which is set in the ā€¦ The Power-O2k number, which is set in the pull-down menu Oroboros O2k \ [[O2k configuration]], is shown in the active graph. To show it in graphs copied to clipboard, the option "Show Oroboros icon in clipboard files" must be enabled in the Graph-menu [[Graph options - DatLab]].[[Graph options - DatLab]].)
  • TIP2k - DatLab  + (The Titration-Injection microPump (TIP2k) provides automated injection of liquids into both O2k chambers. It is controlled via DatLab, allowing for programmable titration regimes and feedback control.)
  • MtOM  + (The [[Mitochondrial outer membrane| '''mitochondrial outer membrane''']])
  • Succinate transport  + (The [[dicarboxylate carrier]] catalyses the electroneutral exchange of succinate<sup>2-</sup> for HPO<sub>4-</sub><sup>2-</sup>.)
  • Ampere  + (The ampere, symbol A, is the SI unit of el ā€¦ The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge ''e'' to be 1.602 176 634 Ɨ 10<sup>āˆ’19</sup> when expressed in the unit C, which is equal to A s, where the second is defined in terms of Ī”''Ī½''<sub>Cs</sub>.the second is defined in terms of Ī”''Ī½''<sub>Cs</sub>.)
  • Isolated system  + (The boundaries of '''isolated system'''s a ā€¦ The boundaries of '''isolated system'''s are impermeable for all forms of energy and matter. Changes of isolated systems have exclusively internal origins, ''e.g.'', internal entropy production, d<sub>i</sub>''S''/d''t'', internal formation of chemical species ''i'' which is produced in a reaction ''r'', d<sub>i</sub>''n<sub>i</sub>''/d''t'' = d<sub>r</sub>''n<sub>i</sub>''/d''t''. In isolated systems some internal terms are restricted to zero by various conservation laws which rule out the production or destruction of the respective quantity. by various conservation laws which rule out the production or destruction of the respective quantity.)
  • Calorespirometric ratio  + (The calorimetric/respirometric or '''calor ā€¦ The calorimetric/respirometric or '''calorespirometric ratio''' (CR ratio) is the ratio of calorimetrically and respirometrically measured heat and oxygen flux, determinded by [[calorespirometry]]. The experimental CR ratio is compared with the theoretically derived [[oxycaloric equivalent]], and agreement in the range of -450 to -480 kJ/mol O<sub>2</sub> indicates a balanced [[aerobic]] energy budget ([[Gnaiger_1987_PhysiolZool|Gnaiger and Staudigl 1987]]). In the transition from aerobic to [[anaerobic | anaerobic metabolism]], there is a [[Limiting pO2|limiting ''p''<sub>O2</sub>]], ''p''<sub>lim</sub>, below which CR ratios become more exothermic since anaerobic energy flux is switched on.h CR ratios become more exothermic since anaerobic energy flux is switched on.)
  • Candela  + (The candela, symbol cd, is the SI unit of ā€¦ The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 Ɨ 10<sup>12</sup> Hz, ''K''<sub>cd</sub>, to be 683 when expressed in the unit lm W<sup>āˆ’1</sup>.;/sub>, to be 683 when expressed in the unit lm W<sup>āˆ’1</sup>.)
  • Illumination  + (The chambers of the [[OROBOROS O2k|Oroboros O2k]] ā€¦ The chambers of the [[OROBOROS O2k|Oroboros O2k]] are illuminated by an internal LED. The '''illumination''' is switched on and off in [[DatLab]] during the experiment by pressing [F10]. This illumination must be distinguished from light introduced into the chambers by LEDs for the purpose of spectrophotometric and fluorometric measurements. For these, the internal illumination must be switched off.nternal illumination must be switched off.)
  • Matrix-ETS  + (The component of the electron transfer sys ā€¦ The component of the electron transfer system located in the mitochondrial matrix ('''matrix-ETS''') is distringuished from the ETS bound to the mt-inner membrane (membrane-ETS). Electron transfer and corresponding OXPHOS capacities are classically studied in mitochondrial preparations as oxygen consumption supported by various fuel substrates undergoing partial oxidation in the mt-matrix, such as pyruvate, malate, succinate, and others.s pyruvate, malate, succinate, and others.)
  • Affinity of reaction  + (The concept of '''affinity''' and hence ch ā€¦ The concept of '''affinity''' and hence chemical force is deeply rooted in the notion of '''attraction''' (and repulsion) of alchemy, which was the foundation of chemistry originally, but diverted away from laboratory experiments towards occult secret societies [1].<sup>**</sup> Newton's extensive experimental alchemical work and his substantial written track record on alchemy (which he did not publish) is seen today as a key inspiration for his development of the concept of the gravitational force [2-4]. This marks a transition of the meaning of affinity, from the descriptive 'adjacent' (proximity) to the causative 'attractive' (force) [5]. Correspondingly, Lavoisier (1790) equates affinity and force [6]: ā€œ''... the degree of force or affinity with which the acid adheres to the base''ā€ [5]. By discussing the influence of electricity and gravity on chemical affinity, Liebig (1844) considers affinity as a force [7]. This leads to Guldberg and Waage's [[mass action ratio]] ('Studies concerning affinity', 1864; see [5]), the free energy and chemical affinity of Helmholtz (1882 [8]), and chemical thermodynamics of irreversible processes [9], where flux-force relations are center stage [10]. </br></br>According to the IUPAC definition, the '''affinity of reaction''', ''A'' [JĀ·mol<sup>-1</sup>], equals the negative molar Gibbs energy of reaction [11], which is the negative Gibbs [[force]] of reaction (derivative of [[Gibbs energy]] per [[advancement]] of reaction [12]):</br></br> -''A'' = Ī”<sub>r</sub>''F'' = āˆ‚''G''/āˆ‚<sub>r</sub>''Ī¾''</br></br>The historical account of affinity is summarized by concluding, that today affinity of reaction should be considered as an isomorphic motive '''force''' and be generalized as such. This will help to (''1'') avoid confusing reversals of sign conventions (repulsion = negative attraction; pull = negative push), (''2'') unify symbols across classical and nonequilibrium thermodynamics [12,13], and thus (''3'') facilitate interdisciplinary communication by freeing ourselves from the alchemical, arcane scientific nomenclature.ry communication by freeing ourselves from the alchemical, arcane scientific nomenclature.)
  • Latent mitochondrial dysfunction  + (The concept on '''latent mitochondrial dys ā€¦ The concept on '''latent mitochondrial dysfunction''' presents the working hypothesis that the dynamic mitochondrial stress response provides a more sensitive and integrative marker for degenerative disease-related defects compared to acute mitochondrial dysfunction. The risk for developing a disease may be quantified in terms of a stress response, rather than a static pathophysiological state. Acute and latent mitochondrial dysfunction are studied at baseline and in response to a particular (e.g. oxidative) stress, using a mitochondrial stress resistance test.ng a mitochondrial stress resistance test.)
 (The file type generated by [[DatLab]] is *.DLD.)
  • Mark specifications - DatLab  + (The function '''Mark specifications''' is ā€¦ The function '''Mark specifications''' is largely replaced by [[SUIT: Browse DL-Protocols and templates |SUIT DL-Protocols]] and [[Instrumental: Browse DL-Protocols and templates |Instrumental DL-Protocols]] in [https://www.oroboros.at/index.php/product/datlab/ DatLab 7.4]. Mark specifications allow the user to rename [[Marks - DatLab| Marks]] in the active plot and save/recall the settings. Rename marks individually by clicking into the horizontal bar, or use corresponding templates for renaming the entire sequence of marks.for renaming the entire sequence of marks.)
  • Hydride  + (The hydride anion is the species H<sup>āˆ’</sup>.)
  • Illumination on/off  + (The illumination in both chambers is switched on/off.)
  • Kelvin  + (The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant ''k'' to be 1.380 649 Ɨ 10<sup>āˆ’23</sup> when expressed in the unit J x<sup>-1</sup> K<sup>āˆ’1</sup>.)
  • Kilogram  + (The kilogram, symbol kg, is the SI unit of ā€¦ The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant ''h'' to be 6.626 070 15 Ɨ 10<sup>āˆ’34</sup> when expressed in the unit J s, which is equal to kg m<sup>2</sup> s<sup>āˆ’1</sup>, where the meter and the second are defined in terms of ''c'' and Ī”''Ī½''<sub>Cs</sub>.he meter and the second are defined in terms of ''c'' and Ī”''Ī½''<sub>Cs</sub>.)
  • Malate-aspartate shuttle  + (The malate-aspartate shuttle involves the ā€¦ The malate-aspartate shuttle involves the glutamate-aspartate carrier and the 2-oxoglutarate carrier exchanging malate<sup>2-</sup> for 2-oxoglutarate<sup>2-</sup>. Cytosolic and mitochondrial malate dehydrogenase and transaminase complete the shuttle for the transport of cytosolic NADH into the mitochondrial matrix. It is most important in heart, liver and kidney.chondrial matrix. It is most important in heart, liver and kidney.)
  • Mouse control: Mark  + (The mark mode is active by default, can be ā€¦ The mark mode is active by default, can be selected in the menu or by [Ctrl+M]. If '''Mouse control: Mark''' is enabled, specific sections of the experiment can be marked in each plot. </br>Usually, marks are set on the plot for oxygen concentration for calibration, whereas marks on the plot for oxygen flux are set for exporting the median or average of flux to a table.</br></br>Ā»More details: [[Marks - DatLab]].[Marks - DatLab]].)
  • Wavelength range  + (The minimum and the maximum wavelengths ov ā€¦ The minimum and the maximum wavelengths over which an [[absorbance spectrum]] is measured are described in terms of the [[wavelength range]]. It is determined mainly by the specifications of the [[spectrophotometer]] and the type of [[light source]] used, and the characteristic [[absorbance spectrum]] of the sample being investigated.[[absorbance spectrum]] of the sample being investigated.)
  • Ergodynamics  + (The mission of '''ergodynamics''' is the r ā€¦ The mission of '''ergodynamics''' is the revelation of relations of general validity. "''Thermodynamics deals with relationships between properties of systems at equilibrium and with differences in properties between various equilibrium states. It has nothing to do with time. Even so, it is one of the most powerful tools of physical chemistry''" [1]. '''Ergodynamics''' is the theory of exergy changes (from the Greek word 'erg' which means [[work]]). Ergodynamics includes the fundamental aspects of thermodynamics ('[[heat]]') and the thermodynamics of irreversible processes (TIP; nonequilibrium thermodynamics), and thus links thermodynamics to kinetics. In its most general scope, ergodynamics is the science of [[energy]] transformations. Classical thermodynamics includes [[open system]]s, yet as a main focus it describes [[closed system]]s. This is reflected in a nomenclature that is not easily applicable to the more general case of open systems [2]. At present, IUPAC recommendations [3] fall short of providing adequate guidelines for describing energy transformations in open systems.ng energy transformations in open systems.)
  • Creatine kinase  + (The mitochondrial '''creatine kinase''', also known as phosphocreatine kinase (CPK), facilitates energy transport with [[creatine]] and [[phosphocreatine]] as diffusible intermediates.)
  • Respiratory chain  + (The mitochondrial '''respiratory chain''' ā€¦ The mitochondrial '''respiratory chain''' (RC) consists of enzyme complexes arranged to form a metabolic system of convergent pathways for [[oxidative phosphorylation]]. In a general sense, the RC includes (1) the [[electron transfer pathway]] (ET-pathway), with transporters for the exchange of reduced substrates across the inner mitochondrial membrane, enzymes in the matrix space (particularly dehydrogenases of the tricarboxylic acid cycle), inner membrane-bound electron transfer complexes, and (2) the inner membrane-bound enzymes of the [[phosphorylation system]].[[phosphorylation system]].)
  • Mole  + (The mole [mol] is the SI base unit for the ā€¦ The mole [mol] is the SI base unit for the [[amount |amount of substance]] of a system that contains 6.02214076Ā·10<sup>23</sup> specified elementary entities (see [[Avogadro constant]]). The elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.ther particles, or specified groups of such particles.)
  • Pyruvate carrier  + (The monocarboxylic acid [[pyruvate]]<sup>-</sup> is exchanged electroneutrally for OH<sup>-</sup> by the '''pyruvate carrier'''. H<sup>+</sup>/anion symport is equivalent to OH<sup>-</sup>/anion antiport.)
  • Drift  + (The most common cause of '''drift''' is variation in the intensity of the [[light source]]. The effect of this can be minimised by carrying out a [[balance]] at frequent intervals.)
  • DatLab oxygen flux: performance and data analysis  + (The quality of the results are strongly affected by the performance and data analysis. Therefore, we provide guidelines for performing and evaluating respirometric assays.)
  • Improvement score  + (The relative improvement score, ''RIS'', p ā€¦ The relative improvement score, ''RIS'', provides a measure of improvement of a trait from a value measured at baseline, ''B'', to a value measured after treatment, ''T'', expressing the total improvement, ''T-B'', in relation to the theoretical scope of improvement and the level of the trait observed at baseline. '''RIS'' incorporates the concept of diminishing returns and consideres maintaining a high value of a trait as an improvement relative to the potential loss.mprovement relative to the potential loss.)
  • Reproducibility crisis  + (The reproducibility crisis is alarming.< ā€¦ The reproducibility crisis is alarming.<sup>1</sup> An experiment or study is ''reproducible'' or ''replicable'' when subsequent experiments confirm the results. This is [[research |re-search]]. However, we can define different types of reproducibility depending on the conditions that we use to replicate the previous work or in the information available. Our aim is to focus mostly on two different kinds<sup>2</sup>: '''1. Direct:''' is when we obtaining the same results using the same experimental conditions, materials, and methods as described in the original experiment. This would be the ideal reproducibility of an experiment. However, it requires a very accurate description of how the original experiment was performed. Some journals are trying to resolve the '''reproducibility crisis''' improving the rigor and the excellence on the reported methods and results (e.g. [https://www.cell.com/star-authors-guide STAR Methods in Cell Press]). '''2. Systematical:''' refers to obtaining the same results, but under different conditions; for example, using another cell line or mouse strain or humman study, or inhibiting a gene pharmacologically instead of genetically. This opens the door to subsequent studies to find the conditions under which an initial finding holds.udies to find the conditions under which an initial finding holds.)
  • Second  + (The second, symbol s, is the SI unit of ti ā€¦ The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency āˆ†''Ī½''<sub>Cs</sub>, the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s<sup>āˆ’1</sup>.ssed in the unit Hz, which is equal to s<sup>āˆ’1</sup>.)
  • Stoichiometric number  + (The sign of the '''stoichiometric number'' ā€¦ The sign of the '''stoichiometric number''' ''Ī½''<sub>X</sub> is determined by the nonspatial direction of the transformation (positive for products, negative for substrates), and the magnitude of ''Ī½''<sub>X</sub> is determined by the stoichiometric form. For instance, ''Ī½''<sub>A</sub>=-1 in the reaction 0 = -1 A + 2 B (-1 glucose converted to +2 lactate), but ''Ī½''<sub>A</sub>=-1/6 in the reaction 0 = -1/6 A - 1 B + 1 C (-1/6 glucose and -1 O<sub>2</sub> converted to +1 H<sub>2</sub>CO<sub>3</sub>).1 B + 1 C (-1/6 glucose and -1 O<sub>2</sub> converted to +1 H<sub>2</sub>CO<sub>3</sub>).)
  • Dithionite  + (The sodium salt of '''Dithionite''' Na< ā€¦ The sodium salt of '''Dithionite''' Na<sub>2</sub>S<sub>2</sub>O<sub>4</sub> (Dit) is the 'zero oxygen solution powder' used for [[Oxygen calibration - DatLab |calibration of oxygen sensors]] at [[Zero calibration | zero oxygen concentration]], or for stepwise reduction of oxygen [[concentration]]s in [[MiPNet14.06 Instrumental O2 background |instrumental O<sub>2</sub> background tests]]. It is not recommended to use dithionite in experiments with biological samples or several multisensor approaches, for these see [[Setting the oxygen concentration]].[[Setting the oxygen concentration]].)
  • Install Oroboros protocol package  + (The standard '''Instrumental and SUIT DL-P ā€¦ The standard '''Instrumental and SUIT DL-Protocols''' package is automatically implemented with the simple DatLab programme installation. We recommend a 'clean install': rename your previous DatLab programme subdirectory (''e.g.'' C:\DatLab_OLD).</br>Updates and newly developed DL protocols can be simply downloaded by clicking on [Protocols]\Install Oroboros protocol package.tocols]\Install Oroboros protocol package.)
  • Stirrer A on/off  + (The stirrer in chamber A is switched on/off.)
  • Stirrer B on/off  + (The stirrer in chamber B is switched on/off.)
  • Flux analysis - DatLab  + (The strategy of '''Flux analysis''' using ā€¦ The strategy of '''Flux analysis''' using DatLab depends on the research question and the corresponding settings applied in DatLab when recording the data with the O2k. Usng [[MitoPedia: SUIT |SUIT protocols]], a sequence of respiratory steady-states is measured, marks are set, and numerical data are summarized in [[Mark statistics - DatLab|Mark statistics]] (F2). An AI approach is kept in mind when describing guidelines for evaluation of steady-states during data recording and analysis.states during data recording and analysis.)
  • %  + (The symbol '''%''' indicates 'per cent' (per hundred). {''Quote''} The internationally recognized symbol % (per cent) may be used with the SI. When it is used, a space separates the number and the symbol %. {''end of Quote''}.)
  • ā‰”  + (The symbol '''ā‰”''' indicates (numerical) [[equivalence]], in contrast to = as the symbol for (physicochemical) [[equality]].)
  • Open chamber  + (The term "open O2k-chamber" refers to a situation in which the liquid phase is allowed to equilibrate with a gas phase, but the stopper is partially inserted using the [[Stopper-Spacer]].)
  • Extroduction  + (The term '''extroduction''' is ambiguous a ā€¦ The term '''extroduction''' is ambiguous and needs introduction. An ''external'' extroduction aims at providing a specific exit that opens the door to the parent article. Once you popped up into the article box, there are various ''internal'' extroductions to push down by following hyperlinks to references, keywords, supplementary material, and to the external extroduction. Once you have pushed one level down, there may be hyperlinks to push down further ([[Hofstadter 1979 Harvester Press |Hofstadter 1979]]). One needs to keep track of the links in a nested network of open tabs, to pop up all the way back for returning to the initial reference level. returning to the initial reference level.)
  • Incident light  + (The term '''incident light''' is used for a beam of light falling upon a surface.)
  • Isomorphic  + (The term '''isomorphic''' refers to quanti ā€¦ The term '''isomorphic''' refers to quantities which have [https://www.merriam-webster.com/dictionary/isomorphic ''identical or similar form, shape, or structure'']. In mathematics, an isomorphism defines a [https://www.merriam-webster.com/dictionary/isomorphism ''one-to-one correspondence between two mathematical sets'']. In [[ergodynamics]], isomorphic quantities are defined by equations of identical form. If isomorphic quantities are not expressed in identical units, then these quantities are expressed in different formats which can be converted to identical untis. Example: electric force [V=J/C] and chemical force [Jol=J/mol] are ismorphic [[force]]s; the electrical format [J/C] can be converted to the chemical format [J/mol] by the [[Faraday constant]]. Units not only give meaning to the numerical value of a quantity, but units provide also an abbreviated common language to communicate and compare isomorphic quantities. In irreversible thermodynamics, isomorphic forces are referred to as ''generalized'' forces.are referred to as ''generalized'' forces.)
  • System  + (The term '''system''' has a variety of mea ā€¦ The term '''system''' has a variety of meanings and dictionary definitions in different contexts, ''e.g.'', the [[International System of Units]] (SI), MKSA system, data management system, biological or mechanical system, redox system, [[Electron transfer system]], loosely or completely coupled system, instrumental system. In thermodynamics and [[ergodynamics]], the '''system''' is considered as an experimental system (experimental chamber), separated from the environment as an isolated, adiabatic, closed, or open system. {''Quote'' } The internal domain of any system is separated from the external domain (the surroundings) by a boundary. In theory, energy transformations outside the system can be ignored when describing the system. The surroundings are merely considered as a source or sink for quantities transferred across the system boundary. According to the transfer properties of the boundary, three types of thermodynamic systems are distinguished. (''1'') The boundaries of '''''isolated systems''''' are impermeable for all forms of [[energy]] and matter. Isolated systems do not interact with the surroundings. Strictly, therefore, internal changes of isolated systems cannot be observed from outside since any observation requires interaction. (''2'') The boundaries of '''''closed systems''''' are permeable for [[heat]] and [[work]], but impermeable for [[matter]]. A limiting case is electrons which cross the system boundary when work is exchanged in the form of electric energy [''added'': and light]. The volume of a closed system may be variable. (''3'') The boundaries of '''''open systems''''' allow for the transfer of heat, work and matter. Changes of isolated systems have exclusively internal origins, whereas changes of closed and open systems can be partitioned according to internal and external sources. Production and destruction of a quantity within the system are ''internal'' changes, whereas changes of heat, work and matter due to transfer across the system boundaries are labelled ''extenal''. (External) transfer is thus contrasted with (internal) production or destruction. {''end of Quote'': [[Gnaiger 1993 Pure Appl Chem]]}</br></br>A system may be treated as a black box. In the analysis of [[Continuous system|continuous]] or [[Discontinuous system |discontinuous system]]s, however, information is implied on the internal structure of the system.d on the internal structure of the system.)
  • Hydrogen ion  + (The terms '''hydrogen ion''' H<sup>+ ā€¦ The terms '''hydrogen ion''' H<sup>+</sup> and [[proton]], p or p<sup>+</sup>, are used synonymously in chemistry. A hydrogen ion is a positively charged molecule. In particle physics, however, a proton is a submolecular and subatomic particle with a positive electric charge. The H<sup>+</sup> ion has no electrons and is a bare charge with only about 1/64 000 of the radius of a hydrogen atom. Free H<sup>+</sup> is extremely reactive, with an extremely short lifetime in aqueous solutions. There H<sup>+</sup> forms the hydronium ion H<sub>3</sub>O<sup>+</sup>, which in turn is further solvated by water molecules in clusters such as H<sub>5</sub>O<sub>2</sub><sup>+</sup> and H<sub>9</sub>O<sub>4</sub><sup>+</sup>. The transfer of H<sup>+</sup> in an acidā€“base reaction is referred to as ''proton transfer''. The acid is the H<sup>+</sup> donor and the base is the H<sup>+</sup> acceptor.lt;sup>+</sup>. The transfer of H<sup>+</sup> in an acidā€“base reaction is referred to as ''proton transfer''. The acid is the H<sup>+</sup> donor and the base is the H<sup>+</sup> acceptor.)
  • Proton  + (The terms '''proton''' p and [[hydrogen ion]] ā€¦ The terms '''proton''' p and [[hydrogen ion]] H<sup>+</sup> are used synonymously in chemistry. In particle physics, a proton is a subatomic particle with a positive electric charge. Protons and neutrons are collectively referred to as ''nucleons''. The proton is a bare charge with only about 1/64 000 of the radius of a hydrogen atom, and so the free proton is extremely reactive chemically. Therefore, the free proton has an extremely short lifetime in aqueous solutions where it forms the [[hydronium ion]], H<sub>3</sub>O<sup>+</sup>, which in turn is further solvated by water molecules in clusters such as H<sub>5</sub>O<sub>2</sub><sup>+</sup> and H<sub>9</sub>O<sub>4</sub><sup>+</sup>.;sub>5</sub>O<sub>2</sub><sup>+</sup> and H<sub>9</sub>O<sub>4</sub><sup>+</sup>.)
  • SI prefixes  + (There are 20 '''SI prefixes''' defined to represent multiples and submiltiples of SI units.)
  • Sides  + (There are many '''sides''' of the term 'si ā€¦ There are many '''sides''' of the term 'side' in our language system. Inside and outside are the sides that are separated by the system boundaries of an experimental [[system]]. + and - are the two sides of numbers separated by 0. Pages in books have opposite sides or front sides versus backsides. Many fundamental terms have opposite sides of the meaning, thus spanning the entire message in the space between their apparently contrasting sides, and transforming the paradox as a perspective into the unified whole, the full, the complete. On the other side, such fundamental terms are fully understood only after ''realization'' of the opposite sides of their meaning ā€” treasures discovered in the etymological origins of the word. It makes sense to open all our senses to comprehend the bright side and the dark side of things. Whereas the student sais "I see a black sheep", Zen decides "You see, that one side of the sheep is black". This is the message to consider both sides before choosing sides, besides overcoming a one-sided point of view. Don't rock side-to-side, but get immersed deeply inside things to see the upsides and downsides of every thing or anything, and more so of nothing. Inside is the insight, for insiders and outsiders of the feedback loop of an [[Ouroboros]].Ouroboros]].)
  • DatLab and SUIT protocols  + (This is a brief summary of steps to be tak ā€¦ This is a brief summary of steps to be taken for performing a high-resolution respirometry experiment with '''[[SUIT protocols]]''' using the OROBOROS [[Oroboros O2k]] and '''[[DatLab]]''' software. (1) Search for a specific [[SUIT protocol name]] (go to [[MitoPedia:_SUIT#SUIT_protocols |MitoPedia: SUIT]]). The list of MitoPedia SUIT protocols can be sorted by [[categories of SUIT protocols]] (sorting by SUIT protocol name), which is listed as the 'abbreviation' of the SUIT protocol name. (2) Copy the template for [[Mark names]] into your DatLab subdirectory: DatLab\APPDATA\MTEMPLAT. (3) Copy the [[DatLab-Analysis templates |DatLab-Analysis template]] for this SUIT protocol. (4) Follow the link to the corresponding publication or MiPNet communication, where the pdf file describing the SUIT protocol is available. (5) A DatLab demo file may be available providing an experimental example. After each sequential titration, a mark is set on the plot for flux or flow. After having set all marks, pull down the 'Mark names' menu, select the corresponding SUIT protocol for mark names, and rename all marks. The Mark names template also provides standard values of the titration volume preceding each mark. (6) Go to 'Mark statistics' [F2], copy to clipboard, and paste into the sample tab in the DatLab-Analysis template.</br></br>: Example:</br>:* SUIT protocol name: [[SUIT-011]]</br>:* Mark names in DatLab: 1GM;2D;2c;3S;4U;5Rot-</br>:* DatLab-Analysis template: SUIT_NS(GM)01.xlsx</br>:* MiPNet communciation: [[MiPNet12.23 FibreRespiration]]</br>:* DatLab demo file: MiPNet12.23 FibreRespiration.DLDemo file: MiPNet12.23 FibreRespiration.DLD)
  • Beer-Lambert law  + (This law states that the [[transmittance]] ā€¦ This law states that the [[transmittance]] (''T'') of light though a sample is given by:</br>''T'' = e<sup>-''Īµbc''</sup>, where ''Īµ'' is the molar [[extinction coefficient]], ''b'' is the pathlength of the light through the cuvette (in mm) and ''c'' is the concentration of the pigment in the sample (in mM). Transforming this equation, it can be seen that the [[absorbance]] of light (''A'') is simply given by ''A'' = ''Īµbc''.absorbance]] of light (''A'') is simply given by ''A'' = ''Īµbc''.)
  • Least squares method  + (This method makes use of all of the data p ā€¦ This method makes use of all of the data points of the spectrum in order to quantify a measured spectrum with a reference spectrum of known concentration using a '''least squares method''' to match the measured spectrum with the reference spectrum. The technique results in improved accuracy compared with the use of only a few characteristic wavelengths. of only a few characteristic wavelengths.)
  • Paywall journalism  + (Though often defined from the individual r ā€¦ Though often defined from the individual reader's perspective, a paywall can also apply to an institution (such as a library) or the author. '''Paywall journalism''' is the opposite of [[Open Access]]. [[Open Science]] does not accept paywalls with the argument, that the public pays for governmentally funded research, hence research funded by public grants should be published with open access for the public without paywalls. Paywalls are most frequently defined from the perspective of the individual reader, who has to pay for an article or pay a journal subscription as a requisite for obtaining full access to the information that is otherwise hidden behind the paywall ('''reader-paywall journal'''). From the perspective of the authors, however, an '''author-paywall journal''' is defined as any journal which requests publication charges or page charges from the authors for publishing the manuscript Open Access or publishing it at all. Similarly, an '''institutional-paywall journal''' charges an institution ā€“ typically university libraries ā€“ for granting open access to the members of this institution. As long as paywall journalism prevails in science, at least '''paywall transparence''' should be required, to declare for each publication not only the reader-paywall costs but provide the full information on the author-paywall and institutional-paywall expenses.aywall and institutional-paywall expenses.)
  • O2k signals and output  + (Three electronic '''channel types''' are a ā€¦ Three electronic '''channel types''' are available in the [[O2k-MultiSensor |O2k-MultiSensor system]]. All channels are available twofold (dual-data), for O2k-Chambers A (left) and B (right), based on numerical signals sent at a fixed data sampling time interval (default: 2 s; range 0.2 s to >10 s).rval (default: 2 s; range 0.2 s to >10 s).)
  • Triethyltin bromide  + (Triethyltin bromide (TET) is a lipophilic [1] inhibitor of the mitochondrial [[ATP synthase]] [2] which is used to induce [[LEAK state]] in [[living cells]] of ''Saccharomyces cerevisiae''.)
  • POS calibration - static  + (Two-point calibration of the polarographic oxygen sensor, comprising [[Air calibration]] and [[Zero calibration]]. See also [[POS calibration - dynamic]].)
  • Unspecific binding of TPP+  + (Unspecific binding of the probe molecule T ā€¦ Unspecific binding of the probe molecule TPP<sup>+</sup> in the matrix phase of mitochondria is taken into account as a correction for measurement of the [[mitochondrial membrane potential]]. External unspecific binding is the binding outside of the inner mt-membrane or on the outer side of the inner mt-membrane, in contrast to internal unspecific binding.-membrane, in contrast to internal unspecific binding.)
  • SUITbrowser  + (Use the '''SUITbrowser''' to find the subs ā€¦ Use the '''SUITbrowser''' to find the substrate-uncoupler-inhibitor-titration ([[SUIT]]) protocol most suitable for addressing your research questions.</br></br> <big><big>Open the SUITbrowser: http://suitbrowser.oroboros.at/</big></big></br></br></br>[[Image:PlayVideo.jpg|50px|link=https://www.youtube.com/watch?v=8T33sp9KkJk]] [https://www.youtube.com/watch?v=8T33sp9KkJk How to find a DL-Protocol (DLP)]w.youtube.com/watch?v=8T33sp9KkJk How to find a DL-Protocol (DLP)])
  • Getting started - DatLab  + (Users have to enter their user details the first time they use DatLab 8 on a specific computer. As well, entering some basic settings is required when connecting DatLab 8 with an O2k for the first time.)
  • Valinomycin  + (Valinomycin catalyzes electrogenic K<sup>+</sup> transport down the electrochemical transmembrane gradient (150 ng<sup>.</sup>mg<sup>-1</sup> protein).)
  • Smoothing  + (Various methods of '''smoothing''' can be ā€¦ Various methods of '''smoothing''' can be applied to improve the [[signal-to-noise ratio]]. For instance, data points recorded over time [s] or over a range of wavelengths [nm] can be smoothed by averaging ''n'' data points per interval. Then the average of the ''n'' points per smoothing interval can be taken for each successively recorded data point across the time range or range of the spectrum to give a ''n''-point moving average smoothing. This method decreases the [[noise]] of the signal, but clearly reduces the time or wavelength [[resolution]]. More advanced methods of smoothing are applied to retain a higher [[time resolution]] or wavelength resolution.[[time resolution]] or wavelength resolution.)
  • Hydrogenion flux  + (Volume-specific '''hydrogenion flux''' or ā€¦ Volume-specific '''hydrogenion flux''' or H<sup>+</sup> flux is measured in a closed system as the time derivative of H<sup>+</sup> concentration, expressed in units [pmolĀ·s<sup>-1</sup>Ā·mL<sup>-1</sup>]. H<sup>+</sup> flux can be measured in an open system at steady state, when any acidification of the medium is compensated by external supply of an equivalent amount of base. The extracellular acidification rate (ECAR) is the change of pH in the incubation medium over time, which is zero at steady state. Volume-specific H<sup>+</sup> flux is comparable to volume-specific [[oxygen flux]] [pmolĀ·s<sup>-1</sup>Ā·mL<sup>-1</sup>], which is the (negative) time derivative of oxygen concentration measured in a closed system, corrected for instrumental and chemical background.</br></br>[[pH]] is the negative logarithm of hydrogen ion activity. Therefore, ECAR is of interest in relation to acidification issues in the incubation buffer or culture medium. The physiologically relevant metabolic H<sup>+</sup> flux, however, must not be confused with ECAR.e incubation buffer or culture medium. The physiologically relevant metabolic H<sup>+</sup> flux, however, must not be confused with ECAR.)
  • Different O2 fluxes in left and right chamber  + (What are potential causes for '''different O<sub>2</sub> fluxes in the left and right chamber'''?)
  • Transmittance  + (When light enter a sample, '''transmittance''' (''T'') is the fraction of the intensity (''I'') of the light emerging from the sample compared with the incident light intensity (''I''<sub>''0''</sub>): ''T'' = ''I''/''I''<sub>''0''</sub>.)
  • Absorption  + (When light enters a sample and emerges wit ā€¦ When light enters a sample and emerges with an intensity (''I''), '''absorption''' (''Abs'') is the fraction of the light absorbed by the sample compared with the [[incident light]] intensity (''I''<sub>''0''</sub>): ''Abs'' = 1-''I''/''I''<sub>''0''</sub>. Absorption can also be expressed as ''Abs'' = 1-''T'', where ''T'' is the [[transmittance]].[[transmittance]].)
  • Absorbance spectrum  + (When light enters a sample, the amount of ā€¦ When light enters a sample, the amount of light that it absorbs is dependent upon the wavelength of the incident light. The '''absorbance spectrum''' is the curve derived by plotting the measured [[absorbance]] against the wavelength of the light emerging from the sample over a given [[wavelength range]]. An [[absorbance spectrum]] may be characterised by peaks and troughs (absorbance maxima and minima) that can be used to identify, and sometimes quantify, different absorbing substances present in a sample. absorbing substances present in a sample.)
  • O2k-MultiSensor  + (When one (or more) analytical parameters a ā€¦ When one (or more) analytical parameters are monitored simultaneously with oxygen concentration and oxygen flux, this is an '''O2k-MultiSensor''' application of the [[Oroboros O2k-technology]]. The [[NextGen-O2k]] supports all O2k-MultiSensor Modules, while the O2k does not provide for the Q- and NADH-Redox-Modules. For some O2k-MultiSensor applications it is necessary to introduce one or more additional sensors into the chamber through a MultiSensor stopper. Optical applications require the standard black stoppers.tions require the standard black stoppers.)
  • TIP2k syringe blocked  + (When the '''TIP2k syringe is blocked''', it must not be used with the TIP2k, and specific cleaning instructions should be followed.)
  • Living Communications  + (With '''Living Communications''', [https:/ ā€¦ With '''Living Communications''', [https://www.bioenergetics-communications.org/index.php/bec Bioenergetics Communications] (BEC) takes the next step from pre-print to re-print. The concept of ''Living Communications'' pursues a novel culture of scientific communication, addressing the conflict between long-term elaboration and validation of results versus sharing without delay improved methods and preliminary findings. Following the preprint concept, updates may be posted on the BEC website of the resource publication. Updated versions of Living Communications are submitted for Open Peer Review with full traceability. In contrast to static papers, evolution of ''Living Communications'' is more resourceful and efficient than a ā€˜newā€™ publication. ''Living Communications'' provide a pathway along the scientific culture of lively debate towards tested and trusted milestones of research, from pre-print to re-print, from initial steps to next steps.e-print, from initial steps to next steps.)
  • Internal flow  + (Within the system boundaries, irreversible ā€¦ Within the system boundaries, irreversible '''internal flows''', ''I''<sub>i</sub>,ā€”including chemical reactions and the dissipation of internal gradients of heat and matterā€”contribute to internal entropy production, d<sub>i</sub>''S''/d''t''. In contrast, [[external flow]]s, ''I''<sub>e</sub>, of heat, work, and matter proceed reversibly across the system boundaries (of zero thickness). Flows are expressed in various [[format]]s per unit of time, with corresponding [[motive unit]]s [MU], such as chemical [mol], electrical [C], mass [kg]. Flow is an [[extensive quantity]], in contrast to [[flux]] as a [[specific quantity]].ecific quantity]].)
  • Liver mitochondria purification  + ([[Armstrong 2010 J Comp Physiol B]]: This paper describes a method for purification of rodent liver mitochdondria using relatively low-speed centrifugation through discontinuous Percoll gradients.)
  • File:MitoFitPreprints and BEC manuscript template.docx  + ([[Bioenergetics Communications]] and [[MitoFit Preprints]] manuscript template.)
  • ET-pathway competent state  + ([[Electron transfer pathway]] competent state, ''see'' '''[[Electron-transfer-pathway state]]'''.)
  • Duroquinol  + ([[Electron-transfer-pathway state |ET-path ā€¦ [[Electron-transfer-pathway state |ET-pathway level 2]] is supported by '''duroquinol''' DQ feeding electrons into Complex III (CIII) with further electron transfer to CIV and oxygen. Upstream pathways are inhibited by rotenone and malonic acid in the absence of other substrates linked to ET-pathways with entry into the Q-junction.T-pathways with entry into the Q-junction.)
  • Fluorometric dyes  + ([[Extrinsic fluorophores]]; fluorescent markers.)
  • SUIT-014  + ([[File: 1GM;2D;3P;4S;5U;6Rot-.png|400px]])
  • O2k-sV-Module  + ([[File:11200-01.jpg|180px|right]] The ''' ā€¦ [[File:11200-01.jpg|180px|right]] </br>The '''O2k-sV-Module''' is the O2k small-volume module, comprised of two DuranĀ® glass chambers of 12 mm inner diameter specifically developed to perform high-resolution respirometry with reduced amounts of biological sample, and all the components necessary for a smaller operation volume ''V'' of 0.5 mL. The current DatLab version is included in the delivery of this revolutionary module.the delivery of this revolutionary module.)
  • SUIT-033  + ([[File:1D.1;2PGM;3D2.5-.png|450px]])
  • SUIT-038 O2 mt D091  + ([[File:1D;2M.1;2H2O;2c;3M.2;3M.5;3M1;3M2;4P;5G;6S10;6S50;7Gp;8U;9Rot;10Ama.png|400px]])
  • SUIT-041 O2 mt D096  + ([[File:1D;2M.1;3AC;3c;4M2;5P;6S;7Rot;8Ama.png|400px]])
  • SUIT-037 O2 mt D090  + ([[File:1D;2M.1;3Oct;3c;4M.2;4M.5;4M1;4M2;5P;6G;7S10;7S50;8Gp;9U;10Rot;11Ama.png|400px]])
  • SUIT-002 O2 mt D005  + ([[File:1D;2M.1;3Oct;3c;4M2;5P;6G;7S;8Gp;9U;10Rot;11Ama;12AsTm;13Azd.png|400px]])
  • SUIT-025  + ([[File:1D;2M.1;3Oct;3c;4M2;5P;6G;7S;8Rot-.png|600px]])
  • SUIT-025 O2 mt D057  + ([[File:1D;2M.1;3Oct;3c;4M2;5P;6G;7S;8Rot;9Ama.png|600px]])
  • SUIT-002  + ([[File:1D;2M.1;3Oct;4M2;5P;6G;7S;8Gp;9U;10Rot-.png|400px]])
  • SUIT-036 O2 mt D089  + ([[File:1D;2M.1;3Pal;3c;4M.2;4M.5;4M1;4M2;5P;6G;7S10;7S50;8Gp;9U;10Rot;11Ama.png|400px]])
  • SUIT-040 O2 mt D094  + ([[File:1D;2M.1;3Pal;3c;4M2;5P;6G;7S;8Gp;9U;10Rot;11Ama.png|400px]])
  • SUIT-040 O2 pfi D095  + ([[File:1D;2M.1;3Pal;3c;4M2;5P;6G;7S;8Gp;9U;10Rot;11Ama.png|400px]])
  • SUIT-039 O2 mt D092  + ([[File:1D;2M.1;3Pal;3c;4M2;5P;6G;7S;8U;9Rot;10Ama.png|400px]])
  • SUIT-039 O2 pfi D093  + ([[File:1D;2M.1;3Pal;3c;4M2;5P;6G;7S;8U;9Rot;10Ama.png|400px]])
  • SUIT-007  + ([[File:1G;2D;3M;4U-.png|300px]])
  • SUIT-014 O2 pfi D042  + ([[File:1GM;2D;2c;3P;4S;5U;6Rot;7Ama.png|400px]])
  • SUIT-021 O2 mt D035  + ([[File:1GM;2D;2c;3S;4Rot;5Omy;6U;7Ama.png|300px]])
  • SUIT-011 O2 pfi D024  + ([[File:1GM;2D;2c;3S;4U;5Rot;6Ama.png|400px]])
  • SUIT-021  + ([[File:1GM;2D;3S;4Rot;5Omy;6U-.png|400px]])
  • SUIT-021 Fluo mt D036  + ([[File:1GM;2D;3S;4Rot;5Omy;6U;7Ama.png|300px]])
  • SUIT-011  + ([[File:1GM;2D;3S;4U;5Rot-.png|400px|SUIT-011]])
  • SUIT-018  + ([[File:1GMS;2D-.png|300px|SUIT-018]])
  • SUIT-018 O2 mt D054  + ([[File:1GMS;2D;2c;3Ama.png|290px]])
  • SUIT-018 AmR mt D031  + ([[File:1GMS;2D;3Ama.png|290px]])
  • SUIT-018 AmR mt D041  + ([[File:1GMS;2D;3Ama.png|290px]])
  • SUIT-018 AmR mt D040  + ([[File:1GMS;2D;3Ama.png|290px|SUIT-018]])
  • SUIT-027  + ([[File:1M;2D;3M;4P;5G-.png|400px]])
  • SUIT-017  + ([[File:1OctM;2D;2c;3G;4S;5U;6Rot-.png |355px]])
  • SUIT-017 O2 pfi D049  + ([[File:1OctM;2D;2c;3G;4S;5U;6Rot;7Ama.png|350px]])
  • SUIT-005 O2 pfi D011  + ([[File:1OctM;2D;2c;3P;4S;5U;6Rot;7Ama;8AsTm;9Azd.png|450px]])
  • SUIT-017 O2 mt D046  + ([[File:1OctM;2D;3G;3c;4S;5U;6Rot;7Ama.png |350px]])
  • SUIT-015  + ([[File:1OctM;2D;3G;4P;5S;6U;7Rot-.png|451px]])
  • SUIT-015 O2 pti D043  + ([[File:1OctM;2D;3G;4P;5S;6U;7Rot;8Ama.png|450px]])
  • SUIT-016  + ([[File:1OctM;2D;3G;4S;5Rot;6Omy;7U-.png|420px]])
  • SUIT-016 O2 pfi D044  + ([[File:1OctM;2D;3G;4S;5Rot;6Omy;7U;7c-8Ama.jpg|400px]])
  • SUIT-005  + ([[File:1OctM;2D;3P;4S;5U;6Rot-.png|300px]])
  • 1OctM;2D;3PG;4S;5U;6Rot-  + ([[File:1OctM;2D;3PG;4S;5U;6Rot-.png|300px]])
  • 1PGM;2D;3S;4Rot;5U-  + ([[File:1PGM;2D;3S;4Rot;5U-.png|300px]])
  • SUIT-028  + ([[File:1PGM;2D;3S;4U;5Rot-.png|400px|SUIT-028]])
  • 1PGM;2D;3U;4S;5Rot-  + ([[File:1PGM;2D;3U;4S;5Rot-.png|300px]])
  • SUIT-020 O2 mt D032  + ([[File:1PM;2D;2c;3G;4S;5Rot;6Omy;7U;8Ama.png|500px]])
  • SUIT-008 O2 pfi D014  + ([[File:1PM;2D;2c;3G;4S;5U;6Rot;7Ama;8AsTm;9Azd.png|400px]])
  • SUIT-008 O2 mt D026  + ([[File:1PM;2D;2c;3G;4S;5U;6Rot;7Ama;8AsTm;9Azd.png|600px]])
  • SUIT-012 O2 mt D027  + ([[File:1PM;2D;2c;3G;4U;5Ama.png|300px]])
  • SUIT-006 O2 mt D047  + ([[File:1PM;2D;2c;3Omy;4U;5Ama.png|300px]])
  • SUIT-031 O2 mt D075  + ([[File:1PM;2D;2c;3S;4Rot;5U;6Ama.png|400px]])
  • SUIT-001  + ([[File:1PM;2D;2c;3U;4G;5S;6Oct;7Rot;8Gp-.png|400px|SUIT-001]])
  • SUIT-004 O2 pfi D010  + ([[File:1PM;2D;2c;3U;4S;5Rot;6Ama;7AsTm;8Azd.png|450px]])
  • SUIT-006 MgG mt D055  + ([[File:1PM;2D;3Cat;4U;5Ama.png|300px]])
  • SUIT-020  + ([[File:1PM;2D;3G;4S;5Rot;6Omy;7U-.png|400px]])
  • SUIT-020 Fluo mt D033  + ([[File:1PM;2D;3G;4S;5Rot;6Omy;7U;8Ama.png|450px]])
  • SUIT-008 O2 pce D25  + ([[File:1PM;2D;3G;4S;5U;6Rot-.png|300px]])
  • SUIT-008  + ([[File:1PM;2D;3G;4S;5U;6Rot.png|400px]])
  • SUIT-012  + ([[File:1PM;2D;3G;4U-.png|300px]])
  • 1PM;2D;3G;4U;5S;6Rot-  + ([[File:1PM;2D;3G;4U;5S;6Rot-.png|300px]])
  • SUIT-006 Fluo mt D034  + ([[File:1PM;2D;3Omy;4U;5Ama.png|300px]])
  • SUIT-006 AmR mt D048  + ([[File:1PM;2D;3Omy;4U;5Ama.png|400px]])
  • SUIT-031  + ([[File:1PM;2D;3S;4Rot;5U;-.png|400px]])
  • SUIT-004  + ([[File:1PM;2D;3U;4S;5Rot.png|450px]])
  • SUIT-029 O2 mt D066  + ([[File:1PM;2T;2D;2c;3Omy;4U;5G;6S;6U;7Rot;8Ama.png|350px]])
  • SUIT-019 O2 pfi D045  + ([[File:1PalM;2D;2c;3Oct;4P;5G;6U;7S;8Rot;9Ama.png|400px]])
  • SUIT-019  + ([[File:1PalM;2D;3Oct;4P;5G;6U;7S;8Rot-.png|450px]])
  • SUIT-009 O2 mt D015  + ([[File:1S;2D;2c;3P;4Rot;5Ama.png|400px|SUIT9]])