Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Fernstroem 2007 J Appl Physiol (1985)

From Bioblast
Publications in the MiPMap
Fernström M, Bakkman L, Tonkonogi M, Shabalina IG, Rozhdestvenskaya Z, Mattsson CM, Enqvist JK, Ekblom B, Sahlin K (2007) Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise. J Appl Physiol 102:1844–9.

» PMID:17234801 Open Access

Fernstroem M, Bakkman L, Tonkonogi M, Shabalina IG, Rozhdestvenskaya Z, Mattsson CM, Enqvist JK, Ekblom B, Sahlin K (2007) J Appl Physiol

Abstract: The hypothesis that ultraendurance exercise influences muscle mitochondrial function has been investigated. Athletes in ultraendurance performance performed running, kayaking, and cycling at 60% of their peak O(2) consumption for 24 h. Muscle biopsies were taken preexercise (Pre-Ex), postexercise (Post-Ex), and after 28 h of recovery (Rec). Respiration was analyzed in isolated mitochondria during state 3 (coupled to ATP synthesis) and state 4 (noncoupled respiration), with fatty acids alone [palmitoyl carnitine (PC)] or together with pyruvate (Pyr). Electron transport chain activity was measured with NADH in permeabilized mitochondria. State 3 respiration with PC increased Post-Ex by 39 and 41% (P < 0.05) when related to mitochondrial protein and to electron transport chain activity, respectively. State 3 respiration with Pyr was not changed (P > 0.05). State 4 respiration with PC increased Post-Ex but was lower than Pre-Ex at Rec (P < 0.05 vs. Pre-Ex). Mitochondrial efficiency [amount of added ADP divided by oxygen consumed during state 3 (P/O ratio)] decreased Post-Ex by 9 and 6% (P < 0.05) with PC and PC + Pyr, respectively. P/O ratio remained reduced at Rec. Muscle uncoupling protein 3, measured with Western blotting, was not changed Post-Ex but tended to decrease at Rec (P = 0.07 vs. Pre-Ex). In conclusion, extreme endurance exercise decreases mitochondrial efficiency. This will increase oxygen demand and may partly explain the observed elevation in whole body oxygen consumption during standardized exercise (+13%). The increased mitochondrial capacity for PC oxidation indicates plasticity in substrate oxidation at the mitochondrial level, which may be of advantage during prolonged exercise. Keywords: P/O ratio; uncoupling protein 3; fatty acid oxidation

O2k-Network Lab: SE Stockholm Sahlin K


Labels: MiParea: Respiration, Exercise physiology;nutrition;life style 


Organism: Human  Tissue;cell: Skeletal muscle  Preparation: Isolated mitochondria 


Coupling state: LEAK, OXPHOS